A226063 Number of fixed points in base n for the sum of the fourth power of its digits.
1, 1, 3, 4, 1, 1, 7, 3, 4, 3, 1, 2, 1, 7, 2, 2, 1, 4, 2, 6, 2, 3, 1, 3, 1, 11, 3, 3, 2, 2, 7, 4, 1, 4, 3, 1, 3, 4, 1, 2, 2, 2, 3, 4, 2, 2, 1, 2, 1, 2, 1, 2, 4, 3, 3, 2, 2, 1, 3, 2, 5, 2, 9, 2, 1, 2, 1, 1, 3, 2, 2, 1, 2, 5, 1, 5, 5, 4, 2, 5, 3, 2, 2, 3, 3, 1, 2
Offset: 2
Examples
For a(8)=7, the solutions are {1,16,17,256,257,272,273}. In base 8, these are written as {1, 20, 21, 400, 401, 420, 421}. Because 1^4 = 1, 2^4 + 0^4 = 16, 2^4 + 1^4 = 17, 4^4 + 0^4 + 0^4 = 256, etc., these are the fixed points in base 8.
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 2..250
Crossrefs
Programs
-
R
inbase=function(n,b) { x=c(); while(n>=b) { x=c(n%%b,x); n=floor(n/b) }; c(n,x) } yn=rep(NA,20) for(b in 2:20) yn[b]=sum(sapply(1:(1.5*b^4),function(x) sum(inbase(x,b)^4))==1:(1.5*b^4)); yn
Comments