This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226076 #16 Feb 16 2025 08:33:19 %S A226076 1,4,9,16,36,64,144,256,289,576,1024,1156,2304,4096,4624,9216,16384, %T A226076 18496,36864,65536,73984,147456,262144,295936,589824,1048576,1183744, %U A226076 2359296,4194304,4734976,9437184,16777216,18939904,37748736,67108864,75759616,150994944 %N A226076 Lexicographically least sequence of squares that are sum-free. %C A226076 A sum-free sequence has no term that is the sum of a subset of its previous terms. There are an infinite number of sequences that are subsets of the squares and sum-free. This sequence is lexicographically the first. %H A226076 H. L. Abbott, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa48/aa4819.pdf">On sum-free sequences</a> %H A226076 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/A-Sequence.html">MathWorld: A-Sequence</a> %H A226076 Wikipedia, <a href="http://en.wikipedia.org/wiki/Sum-free_sequence">Sum-free sequence</a> %F A226076 Conjecture: a(n) = 4*a(n-3) for n>9. G.f.: -x*(33*x^8 +112*x^7 +80*x^6 +28*x^5 +20*x^4 +12*x^3 +9*x^2 +4*x +1) / (4*x^3 -1). - _Colin Barker_, May 28 2013 %e A226076 a(10)=576 as 576 is the next square after a(9)=289 that cannot be formed from distinct sums of a(1),...,a(9) (1,4,9,16,36,64,144,256,289). %t A226076 memberQ[n1_, k1_] := If[Select[IntegerPartitions[n1^2, Length[k1], k1], Sort@#==Union@# &]=={}, False, True]; k={1}; n=1; While[Length[k]<20, (If[!memberQ[n, k], k=Append[k, n^2]]; n++)]; k %Y A226076 Cf. A225947. %K A226076 nonn %O A226076 1,2 %A A226076 _Frank M Jackson_, May 25 2013 %E A226076 More terms from _Colin Barker_, May 28 2013 %E A226076 a(33)-a(37) from _Donovan Johnson_, Dec 17 2013