cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226078 Table read by rows: prime power factors of central binomial coefficients, cf. A000984.

This page as a plain text file.
%I A226078 #28 Nov 28 2024 20:33:28
%S A226078 1,2,2,3,4,5,2,5,7,4,9,7,4,3,7,11,8,3,11,13,2,9,5,11,13,4,5,11,13,17,
%T A226078 4,11,13,17,19,8,3,7,13,17,19,4,7,13,17,19,23,8,25,7,17,19,23,8,27,25,
%U A226078 17,19,23,16,9,5,17,19,23,29,2,9,5,17,19,23,29,31
%N A226078 Table read by rows: prime power factors of central binomial coefficients, cf. A000984.
%H A226078 Reinhard Zumkeller, <a href="/A226078/b226078.txt">Rows n = 0..250 of triangle, flattened</a>
%F A226078 T(n,k) = A141809(A000984(n),k) for k = 0..A067434(n)-1.
%e A226078 .   n        initial rows               A000984(n)   A226047(n)
%e A226078 .  ---+------------------------------+-------------+------------
%e A226078 .   0   [1]                                      1
%e A226078 .   1   [2]                                      2            2
%e A226078 .   2   [2,3]                                    6            3
%e A226078 .   3   [4,5]                                   20            5
%e A226078 .   4   [2,5,7]                                 70            7
%e A226078 .   5   [4,9,7]                                252            9
%e A226078 .   6   [4,3,7,11]                             924           11
%e A226078 .   7   [8,3,11,13]                           3432           13
%e A226078 .   8   [2,9,5,11,13]                        12870           13
%e A226078 .   9   [4,5,11,13,17]                       48620           17
%e A226078 .  10   [4,11,13,17,19]                     184756           19
%e A226078 .  11   [8,3,7,13,17,19]                    705432           19
%e A226078 .  12   [4,7,13,17,19,23]                  2704156           23
%e A226078 .  13   [8,25,7,17,19,23]                 10400600           25
%e A226078 .  14   [8,27,25,17,19,23]                40116600           27
%e A226078 .  15   [16,9,5,17,19,23,29]             155117520           29
%e A226078 .  16   [2,9,5,17,19,23,29,31]           601080390           31
%e A226078 .  17   [4,27,5,11,19,23,29,31]         2333606220           31
%e A226078 .  18   [4,3,25,7,11,19,23,29,31]       9075135300           31
%e A226078 .  19   [8,3,25,7,11,23,29,31,37]      35345263800           37
%e A226078 .  20   [4,9,5,7,11,13,23,29,31,37]   137846528820           37 .
%p A226078 f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
%p A226078 b:= proc(n) local p;
%p A226078       p:= add(f(n+i) -f(i), i=1..n);
%p A226078       seq(`if`(coeff(p, x, i)>0,
%p A226078              i^coeff(p, x, i), NULL), i=1..degree(p))
%p A226078     end:
%p A226078 T:= n-> `if`(n=0, 1, b(n)):
%p A226078 seq(T(n), n=0..30);  # _Alois P. Heinz_, May 25 2013
%t A226078 Table[Power @@@ FactorInteger[(2n)!/n!^2] , {n, 0, 30}] // Flatten (* _Jean-François Alcover_, Jul 29 2015 *)
%o A226078 (Haskell)
%o A226078 a226078 n k = a226078_tabf !! n !! k
%o A226078 a226078_row n = a226078_tabf !! n
%o A226078 a226078_tabf = map a141809_row a000984_list
%o A226078 (PARI) row(n)= if(n<1, [1], [ e[1]^e[2] |e<-Col(factor(binomial(2*n, n)))]); \\ _Ruud H.G. van Tol_, Nov 18 2024
%Y A226078 Cf. A067434 (row lengths), A001316 (left edge), A060308 (right edge), A226047 (row maxima), A226083 (row minima), A000984 (row products).
%Y A226078 Cf. A267823.
%K A226078 nonn,tabf,look
%O A226078 0,2
%A A226078 _Reinhard Zumkeller_, May 25 2013