A226081 Numerators in the Fibonacci (or rabbit) ordering of the positive rational numbers.
1, 2, 3, 1, 4, 1, 3, 5, 1, 4, 5, 2, 6, 1, 5, 7, 3, 7, 2, 5, 7, 1, 6, 9, 4, 10, 3, 7, 9, 2, 7, 8, 3, 8, 1, 7, 11, 5, 13, 4, 9, 13, 3, 10, 11, 4, 11, 2, 9, 12, 5, 11, 3, 8, 9, 1, 8, 13, 6, 16, 5, 11, 17, 4, 13, 14, 5, 16, 3, 13, 17, 7, 15, 4, 11, 13, 2, 11, 16
Offset: 1
Examples
The numerators are read from the rationals listed in "rabbit order": 1/1, 2/1, 3/1, 1/2, 4/1, 1/3, 3/2, 5/1, 1/4, 4/3, 5/2, 2/3, 6/1, ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..6000
- Index entries for fraction trees
Crossrefs
Cf. A226080.
Programs
-
Mathematica
z = 13; d[s_List, t_List] := Part[s, Sort[Flatten[Map[Position[s, #] &, Complement[s, t]]]]]; g[1] = {1}; g[2] = {2}; Do[ g[n] = d[Riffle[g[n - 1] + 1, 1/g[n - 1]], g[n - 2]], {n, 3, z}]; (* Edited by M. F. Hasler, Nov 30 2018 *) j[1] = g[1]; j[n_] := Join[j[n - 1], g[n]]; j[z]; (* rabbit-ordered rationals *) Denominator[j[z]] (* A226080 *) Numerator[j[z]] (* A226081 *)
-
PARI
A226081_vec(N=100)={my(T=[1], S=T, A=T); while(N>#A=concat(A, apply(numerator, T=select(t->!setsearch(S, t), concat(apply(t->[t+1, 1/t], T))))), S=setunion(S, Set(T))); A} \\ M. F. Hasler, Nov 30 2018
-
PARI
A226081(n)=numerator(RabbitOrderedRational(n)) \\ See A226080. - M. F. Hasler, Nov 30 2018
Comments