cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226108 Primes remaining prime if all but two digits are deleted.

This page as a plain text file.
%I A226108 #24 Jul 23 2025 05:26:25
%S A226108 11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,113,
%T A226108 131,137,173,179,197,311,317,431,617,719,1117,1171,4111,11113,11117,
%U A226108 11119,11131,11171,11173,11197,11311,11317,11719,11731,13171,13711,41113
%N A226108 Primes remaining prime if all but two digits are deleted.
%C A226108 Subsequence of A069488.
%D A226108 C. Caldwell, Truncatable primes, J. Recreational Math., 19:1 (1987) 30-33.
%H A226108 Tim Cieplowski, <a href="/A226108/b226108.txt">Table of n, a(n) for n = 1..2720</a>
%H A226108 P. Ballew, <a href="http://pballew.blogspot.com/2013/05/knockout-primes-and-new-notation.html">Knockout Primes and a new notation</a>, May 17, 2013
%H A226108 C. Caldwell, <a href="https://t5k.org/glossary/xpage/DeletablePrime.html">The Prime Glossary: Deletable Prime</a>
%e A226108 For a(3)=137, all pairs of two digits (in their original order) 13, 17, and 37 are prime.
%t A226108 testQ[n_] := n > 9 && Catch[Block[{d = IntegerDigits@n}, Do[If[! PrimeQ[ d[[j]] + 10*d[[i]]], Throw@False], {j, 2, Length@d}, {i, j-1}]; True]]; Select[Prime@ Range[10^5], testQ] (* _Giovanni Resta_, May 28 2013 *)
%Y A226108 Cf. A019546, A051362, A069488.
%K A226108 nonn,base
%O A226108 1,1
%A A226108 _Tim Cieplowski_, May 26 2013