cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226122 Expansion of (1+2*x+x^2+x^3+2*x^4+x^5)/(1-2*x^3+x^6).

This page as a plain text file.
%I A226122 #34 Jun 13 2015 00:54:40
%S A226122 1,2,1,3,6,3,5,10,5,7,14,7,9,18,9,11,22,11,13,26,13,15,30,15,17,34,17,
%T A226122 19,38,19,21,42,21,23,46,23,25,50,25,27,54,27,29,58,29,31,62,31,33,66,
%U A226122 33,35,70,35,37,74,37,39,78,39
%N A226122 Expansion of (1+2*x+x^2+x^3+2*x^4+x^5)/(1-2*x^3+x^6).
%C A226122 A226023 (starting from A226023(-2)=0) and successive differences:
%C A226122 0,    -1,   0,    2,     3,   6,   12,   15,   20,   30,...
%C A226122 -1,    1,   2,    1,     3,   6,    3,    5,   10,    5,...  = a(n-1)
%C A226122 2,     1,  -1,    2,     3,  -3,    2,    5,   -5,    2,...
%C A226122 -1,   -2,   3,    1,    -6,   5,    3,  -10,    7,    5,...
%C A226122 -1,    5,  -2,   -7,    11,  -2,  -13,   17,   -2,  -19,...
%C A226122 6,    -7,  -5,   18,   -13, -11,   30,  -19,  -17,   42,...
%C A226122 -13,   2,  23,  -31,    2,   41,  -49,    2,   59,   67,...
%C A226122 15,   21, -54,   33,   39,  -90,   51,   57, -126,   69,... multiples of 3
%C A226122 6,   -75,  87,    6, -129,  141,    6, -183,  195,    6,... multiples of 3
%C A226122 -81, 162, -81, -135,  270, -135, -189,  378, -189, -243,... multiples of 27
%C A226122 The last line is -27*a(n+3)*A131561(n+1).
%C A226122 The recurrences in the Formula field hold for the array.
%H A226122 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).
%F A226122 a(n) = A130823(n-1) * A131534(n).
%F A226122 a(n) = A226023(n) - A226023(n-1) with A226023(-1)=-1.
%F A226122 a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) = a(n-1) +2*a(n-3) -2*a(n-4) -a(n-6) +a(n-7). [_Ralf Stephan_]
%F A226122 From _Bruno Berselli_, May 29 2013: (Start)
%F A226122 G.f.: (1+x)^3*(1-x+x^2)/((1-x)^2*(1+x+x^2)^2).
%F A226122 a(n) = 2*a(n-3)-a(n-6).
%F A226122 a(3n)*a(3n-1)-a(3n-2) = A016754(n-1), n>0. (End)
%e A226122 Given A130823 = 1,1,1,3,3,3,5,5,5,7,7,7,... and A131534 = 1,2,1,1,2,1,1,2,1,1,2,1,..., then a(0)=1*1=1, a(1)=1*2=2, a(2)=1*1=1, a(3)=3*1=3, a(4)=3*2=6, etc.
%e A226122 Given A226023(n) from A226023(-1)=-1, then a(0)=0-(-1)=1, a(1)=2-0=2, a(2)=3-2=1, a(3)=6-3=3, a(4)=12-6=6, etc.
%t A226122 repeat=20; Table[{1, 2, 1}, {repeat}]*(2*Range[repeat]-1) // Flatten
%t A226122 (* or *) Table[Floor[(2*n+1)/3]*Floor[(2*n+5)/3], {n, -1, 59}] // Differences (* _Jean-François Alcover_, May 29 2013 *)
%Y A226122 Cf. A005408, A016754, A130823, A131534, A226023.
%K A226122 nonn,easy
%O A226122 0,2
%A A226122 _Paul Curtz_, May 27 2013