This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226135 #20 Sep 16 2017 00:36:35 %S A226135 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,5,2,21,2,1,1,1,3, %T A226135 2,3,6,8,19,6,1,1,2,5,21,3,4,12,17,4,1,1,3,2,3,5,4,15,4,3,1,1,7,2,4, %U A226135 14,16,4,16,4,1,1,5,6,3,2,5,11,13,15,1,1,5 %N A226135 Let abcd... be the decimal expansion of n. Number of iterations of the map n -> f(n) needed to reach a number < 10, where f(n) = a^b + c^d + ... which ends in an exponent or a base according as the number of digits is even or odd. %C A226135 Inspired by the sequence A133501 (Number of steps for "powertrain" operation to converge when started at n). It is conjectured that the trajectory for each number converges to a single number < 10. %C A226135 The conjecture is true, since f(x) < x trivially holds for x > 10^10 and I have verified that for every 10 <= x <= 10^10 there is a k such that f^(k)(x) < x, where f^(k) denotes f applied k times. Both the conventions 0^0 = 1 and 0^0 = 0 have been taken into account. - _Giovanni Resta_, May 28 2013 %H A226135 Michel Lagneau, <a href="/A226135/b226135.txt">Table of n, a(n) for n = 0..10000</a> %e A226135 a(62) = 7 because: %e A226135 62 -> 6^2 = 36; %e A226135 36 -> 3^6 = 729; %e A226135 729 -> 7^2 + 9^1 = 58; %e A226135 58 -> 5^8 = 390625; %e A226135 390625 -> 3^9 + 0^6 + 2^5 = 19715; %e A226135 19715 -> 1^9 + 7^1 + 5^1 = 13; %e A226135 13 -> 1^3 = 1; %e A226135 62 -> 36 -> 729 -> 58 -> 390625 -> 19715 -> 13 -> 1 with 7 iterations. %p A226135 A133501:= proc(n) %p A226135 local a, i, n1, n2, t1, t2; %p A226135 n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=0; %p A226135 for i from 0 to floor(t2/2)-1 do %p A226135 a := a+t1[t2-2*i]^t1[t2-2*i-1]; %p A226135 od: %p A226135 if t2 mod 2 = 1 then %p A226135 a:=a+t1[1]; fi; RETURN(n2*a); end; %p A226135 A226135:= proc(n) %p A226135 local traj , c; %p A226135 traj := n ; %p A226135 c := [n] ; %p A226135 while true do %p A226135 traj := A133501(traj) ; %p A226135 if member(traj, c) then %p A226135 return nops(c)-1 ; %p A226135 end if; %p A226135 c := [op(c), traj] ; %p A226135 end do: %p A226135 end proc: %p A226135 seq(A226135(n), n=0..100) ; %p A226135 # second Maple program: %p A226135 f:= n-> `if`(n<10, n, `if`(is(length(n), odd), f(10*n+1), %p A226135 iquo(irem(n, 100, 'r'), 10, 'h')^h+f(r))): %p A226135 a:= n-> `if`(n<10, 0, 1+a(f(n))): %p A226135 seq(a(n), n=0..100); # _Alois P. Heinz_, May 27 2013 %Y A226135 Cf. A000312, A031348, A031349, A045503, A133500, A225974. %K A226135 nonn,base %O A226135 0,25 %A A226135 _Michel Lagneau_, May 27 2013