A226156 a(n) = BS(n) * W(n) where BS = Sum_{k=0..n} ((-1)^k*k!/(k+1)) S(n, k) and S(n, k) the Stirling subset numbers A048993(n, k). W(n) = Product_{ p primes <= n+1 such that p divides n+1 or p-1 divides n } = A225481(n).
1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 35, 0, -3617, 0, 43867, 0, -1222277, 0, 854513, 0, -236364091, 0, 8553103, 0, -23749461029, 0, 8615841276005, 0, -84802531453387, 0, 90219075042845, 0, -26315271553053477373, 0, 38089920879940267
Offset: 0
Examples
The numerators of 1/1, -1/2, 1/6, 0/2, -1/30, 0/6, 1/42, 0/2, -1/30, 0/10, 5/66, 0/6, -691/2730, 0/14, 35/30, 0/2, -3617/510, 0/6, 43867/798, ... (the denominators are A225481(n)).
Links
- Peter Luschny, Stirling-Frobenius numbers
- Peter Luschny, Generalized Bernoulli numbers.
Programs
-
Mathematica
BS[n_] := Sum[((-1)^k*k!/(k + 1)) StirlingS2[n, k], {k, 0, n}]; W[n_] := Product[If[Divisible[n + 1, p] || Divisible[n, p - 1], p, 1], {p, Prime /@ Range[PrimePi[n + 1]]}]; a[n_] := BS[n] W[n]; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Jul 08 2019 *)
-
Sage
@CachedFunction def EulerianNumber(n, k, m) : # -- The Eulerian numbers -- if n == 0: return 1 if k == 0 else 0 return (m*(n-k)+m-1)*EulerianNumber(n-1, k-1, m) + \ (m*k+1)*EulerianNumber(n-1, k, m) @CachedFunction def SF_BS(n, m): # -- The scaled Stirling-Frobenius Bernoulli numbers -- return add(add(EulerianNumber(n, j, m)*binomial(j, n - k) \ for j in (0..n))/((-m)^k*(k+1)) for k in (0..n)) def A226156(n): # -- The numerators of SF_BS(n, 1) relative to A225481 -- C = mul(filter(lambda p: ((n+1)%p == 0) or (n%(p-1) == 0), primes(n+2))) return C*SF_BS(n, 1) [A226156(n) for n in (0..25)]
Comments