This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226162 #36 Aug 07 2025 08:36:38 %S A226162 0,1,-1,1,1,0,-1,1,-1,1,0,-1,1,-1,-1,0,1,-1,-1,-1,0,1,1,1,-1,0,1,1,1, %T A226162 1,0,-1,-1,-1,1,0,1,-1,1,-1,0,1,-1,1,-1,0,-1,1,1,1,0,-1,-1,-1,-1,0,-1, %U A226162 -1,-1,-1,0,1,1,1,1,0,1,1,-1,1,0,-1,-1,-1,1,0,-1,-1,1,-1,0,1,-1,1,1,0,-1,1,1,1 %N A226162 a(n) = Kronecker Symbol (-5/n), n >= 0. %C A226162 The number of -1's among the four terms following the 0 at a(5*k), for k >= 0, is 1, 2, 3, 3, 1, 0, 3, 2, 2, 1, 4, 4, 0, 1, 3, 3, 1, 1, 3, 4, ... %C A226162 See the Weisstein link, where it is stated that the period length is 0. %C A226162 In general, the sequence {(k/n)} is not periodic if and only if k == 3 (mod 4). - _Jianing Song_, Dec 30 2018 %H A226162 Vincenzo Librandi, <a href="/A226162/b226162.txt">Table of n, a(n) for n = 0..1000</a> %H A226162 Jean-Paul Allouche, Leo Goldmakher, <a href="http://arxiv.org/abs/1608.03957">Mock characters and the Kronecker symbol</a>, arXiv:1608.03957 [math.NT], 2016. %H A226162 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KroneckerSymbol.html">Kronecker Symbol</a> (contains this sequence). %H A226162 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kronecker_symbol">Kronecker Symbol</a> %F A226162 Completely multiplicative with a(2) = -1, a(5) = 0, a(p) = 1 if p == 1, 3, 7, 9 (mod 20), a(p) = -1 if p == 11, 13, 17, 19 (mod 20). - _Jianing Song_, Dec 30 2018 %p A226162 0, seq(numtheory:-jacobi(-5, n), n=1..89); # _Peter Luschny_, Dec 30 2018 %t A226162 Table[KroneckerSymbol[-5, n],{n,0,89}] %o A226162 (PARI) a(n)=kronecker(-5,n); \\ _Andrew Howroyd_, Jul 23 2018 %Y A226162 Cf. A035183 (inverse Moebius transform). %Y A226162 Sequences related to Kronecker symbols that do not form a Dirichlet character: this sequence {(-5/n)}, A034947 {(-1/n)}, A091338 {(3/n)}, A089509 {(7/n)}. %Y A226162 Cf. A080891 (5/n), A100047. %K A226162 sign,mult %O A226162 0,1 %A A226162 _Wolfdieter Lang_, May 29 2013 %E A226162 Keyword:mult added by _Andrew Howroyd_, Jul 23 2018