A226163 Determinant of the (p_n-1)/2-by-(p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol ((i^2-((p_n-1)/2)!*j)/p_n), where p_n is the n-th prime.
0, -1, 0, 0, -8, -72, 0, 0, -2061248, 0, -18150912, 2581719040, 0, 0, 6237406973952, 0, 311692729699401728, 0, 0, 2675112340760315428864, 0, 0, -149670892669766097645487521792, 162894623351898578070944297779200, 273248864699809403831952842162176, 0, 0, -13518055482368485085619549462056665088, 4364947372586985974930810143672643878912
Offset: 2
Keywords
Examples
a(2) = 0 since the Legendre symbol ((1^2-1)/3) is equal to 0.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..80
- L. J. Mordell, The congruence ((p-1)/2)! == 1 or -1 (mod p), Amer. Math. Monthly 68 (1961), 145-146.
- Zhi-Wei Sun, A conjecture on Legendre symbol determinants, a message to Number Theory List, July 17, 2013.
Programs
-
Mathematica
a[n_]:=Det[Table[JacobiSymbol[i^2-((Prime[n]-1)/2)!*j,Prime[n]],{i,1,(Prime[n]-1)/2},{j,1,(Prime[n]-1)/2}]] Table[a[n],{n,2,30}]
Comments