cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226173 The number of connected keis (involutory quandles) of order n.

This page as a plain text file.
%I A226173 #31 Jun 02 2015 14:02:14
%S A226173 1,0,1,0,1,1,1,0,2,1,1,3,1,0,4,0,1,3,1,3,4,0,1,10,2,0,8,2,1,10,1,0,2,
%T A226173 0,1,16,1,0,2,8,1,8,1,0,13,0,1
%N A226173 The number of connected keis (involutory quandles) of order n.
%C A226173 A  quandle (Q,*) is a kei (also called involutory quandle) if for all x,y in Q we have (x*y)*y = x, that is, all right translations R_a: x-> x*a, are involutions.
%D A226173 J. S. Carter, A survey of quandle ideas. in: Kauffman, Louis H. (ed.) et al., Introductory lectures on knot theory, Series on Knots and Everything 46, World Scientific (2012), 22--53.
%D A226173 W. E. Clark, M. Elhamdadi, M. Saito and T. Yeatman, Quandle colorings of knots and applications. J. Knot Theory Ramifications 23/6 (2014), 1450035.
%H A226173 N. Andruskiewitsch, M. Graňa, <a href="http://dx.doi.org/10.1016/S0001-8708(02)00071-3">From racks to pointed Hopf algebras</a>, Adv. Math. 178/2 (2003), 177-243.
%H A226173 J. Scott Carter, <a href="http://arxiv.org/abs/1002.4429">A Survey of Quandle Ideas</a>, arXiv:1002.4429 [math.GT], Feb 2010
%H A226173 W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307, 2013
%H A226173 A. Hulpke, D. Stanovský, P. Vojtěchovský, <a href="http://arxiv.org/abs/1409.2249">Connected quandles and transitive groups</a>, arXiv:1409.2249 [math.GR], Sep 2014, to appear in J. Pure Appl. Algebra.
%Y A226173 Cf. A181771 (number of connected quandles of order n).
%Y A226173 See also Index to OEIS under quandles.
%K A226173 nonn,more,hard
%O A226173 1,9
%A A226173 _W. Edwin Clark_, May 29 2013
%E A226173 a(36)-a(47) (calculated by methods described in Hulpke, Stanovský, Vojtěchovský link) from _David Stanovsky_, Jun 02 2015