A226197 Numbers of vectors with 2*n integers such that each element is either 1 or -1, and their sum > n.
1, 1, 7, 9, 56, 79, 470, 697, 4048, 6196, 35443, 55455, 313912, 499178, 2804012, 4514873, 25211936, 40999516, 227881004, 373585604, 2068564064, 3414035527, 18844224462, 31278197839, 172186125456, 287191809724, 1577401391626, 2642070371194, 14483100716176, 24347999094724
Offset: 1
Keywords
Examples
With n=3 there are 7 vectors with sum bigger than 3: {1, 1, 1, 1, 1, 1} {-1, 1, 1, 1, 1, 1} {1, -1, 1, 1, 1, 1} {1, 1, -1, 1, 1, 1} {1, 1, 1, -1, 1, 1} {1, 1, 1, 1, -1, 1} {1, 1, 1, 1, 1, -1} So a(3) = 7.
Programs
-
C
#include
long long count, n; void addOne(long long sum, long long added) { if (added==n*2) { if (sum>n) ++count; return; } ++added; addOne(sum+1, added); addOne(sum-1, added); } int main() { for (n=1; n<99; n++) { count = 0; addOne(0, 0); printf("%llu, ", count); } return 0; } -
Maple
A226197 := proc(n) add( A094527(n,k),k=1+floor(n/2)..n) ; end proc: # R. J. Mathar, Jun 04 2013
-
Mathematica
a[n_] := Sum[(2*n)!/((n-k)!*(n+k)!), {k, 1 + Floor[n/2], n}]; Array[a,30] (* Giovanni Resta, May 31 2013 *)
Formula
a(n) = sum_{k = 1+floor(n/2)...n} binomial(2n,n-k), sum of the n/2 rightmost elements of row n of A094527. - Giovanni Resta, May 31 2013