This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226200 #33 Mar 05 2025 13:44:43 %S A226200 1,7,38,219,1300,7781,46662,279943,1679624,10077705,60466186, %T A226200 362797067,2176782348,13060694029,78364164110,470184984591, %U A226200 2821109907472,16926659444753,101559956668434,609359740010515,3656158440062996,21936950640377877,131621703842267158,789730223053602839 %N A226200 a(n) = 6^n + n. %C A226200 After 7, the next prime of this form has 238 digits (see A058828). - _Bruno Berselli_, Jun 18 2013 %H A226200 Vincenzo Librandi, <a href="/A226200/b226200.txt">Table of n, a(n) for n = 0..300</a> %H A226200 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-13,6). %F A226200 G.f.: (-1+x+5*x^2)/((6*x-1)*(x-1)^2). %F A226200 a(n) = 8*a(n-1) - 13*a(n-2) + 6*a(n-3). %F A226200 E.g.f.: exp(x)*(exp(5*x) + x). - _Elmo R. Oliveira_, Mar 05 2025 %t A226200 Table[6^n + n, {n, 0, 30}] (* or *) CoefficientList[Series[(-1 + x + 5 x^2) / ((6 x - 1) (x - 1)^2), {x, 0, 30}], x] %o A226200 (Magma) [6^n+n: n in [0..30]]; %o A226200 (Magma) I:=[1, 7, 38]; [n le 3 select I[n] else 8*Self(n-1)-13*Self(n-2)+6*Self(n-3): n in [1..30]]; %o A226200 (PARI) a(n)=6^n+n \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A226200 Cf. numbers of the form k^n + n: A006127 (k=2), A104743 (k=3), A158879 (k=4), A104745 (k=5), this sequence (k=6), A226199 (k=7), A226201 (k=8), A226202 (k=9), A081552 (k=10), A226737 (k=11). %Y A226200 Cf. A058828, A199320 (first differences). %K A226200 nonn,easy %O A226200 0,2 %A A226200 _Vincenzo Librandi_, Jun 16 2013