This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226203 #34 Jun 22 2017 10:23:11 %S A226203 1,-3,-1,1,1,3,-1,1,3,3,5,1,3,5,5,7,3,5,7,7,9,5,7,9,9,11,7,9,11,11,13, %T A226203 9,11,13,13,15,11,13,15,15,17,13,15,17,17,19,15,17,19,19,21,17,19,21, %U A226203 21,23,19,21,23,23,25,21,23,25,25 %N A226203 a(5n) = a(5n+3) = a(5n+4) = 2n+1, a(5n+1) = 2n-3, a(5n+2) = 2n-1. %C A226203 Given the numerators of A225948/A226008 ordered according to A226096: 0, -15, -3, 2, 3, 6, -7, 5, 12, 15, 20, 9, 21, 30, 35,... = t(n), then (a(n) + t(n)/a(n))^2 = A226096(n). %C A226203 First six differences (of period 5): %C A226203 ...-4, 2, 2, 0, 2, -4, 2, 2, 0, 2, ... %C A226203 ....6, 0, -2, 2, -6, 6, 0, -2, 2, -6, ... %C A226203 ...-6, -2, 4, -8, 12, -6, -2, 4, -8, 12, ... %C A226203 ....4, 6, -12, 20, -18, 4, 6, -12, 20, -18, ... %C A226203 ....2, -18, 32, -38, 22, 2, -18, 32, -38, 22, ... %C A226203 ..-20, 50, -70, 60, -20, -20, 50, -70, 60, -20, ... %H A226203 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1). %F A226203 a(n+5) = a(n) + 2. %F A226203 G.f.: (1-4*x+2*x^2+2*x^3+x^5)/((1-x)^2*(1+x+x^2+x^3+x^4)). [_Bruno Berselli_, Jun 01 2013] %F A226203 a(n) = a(n-1)+a(n-5)-a(n-6) with a(0)=a(3)=a(4)=1, a(1)=-3, a(2)=-1, a(5)=3. [_Bruno Berselli_, Jun 01 2013] %t A226203 a[n_] := 2 Quotient[n, 5] + Switch[Mod[n, 5], 0, 1, 1, -3, 2, -1, 3, 1, 4, 1]; Table[a[n], {n, 0, 64}] (* _Jean-François Alcover_, Jun 22 2017 *) %o A226203 (Haskell) %o A226203 import Data.List (transpose) %o A226203 a226203 n = a226203_list !! n %o A226203 a226203_list = concat $ transpose %o A226203 [[1, 3 ..], [-3, -1 ..], [-1, 1 ..], [1, 3 ..], [1, 3 ..]] %o A226203 -- _Reinhard Zumkeller_, Jun 02 2013 %Y A226203 Cf. A007395, A005408, A130497, A226096. %K A226203 sign,easy %O A226203 0,2 %A A226203 _Paul Curtz_, May 31 2013 %E A226203 Edited by _Bruno Berselli_, Jun 01 2013