This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226206 #24 Sep 14 2021 06:57:29 %S A226206 1,1,1,1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0, %T A226206 0,1,1,0,1,0,2,0,1,0,1,1,0,0,1,0,0,1,0,0,1,1,0,1,0,3,1,3,0,1,0,1,1,0, %U A226206 0,0,0,2,2,0,0,0,0,1,1,0,1,1,5,0,7,0,5,1,1,0,1,1,0,0,0,0,0,7,7,0,0,0,0,0,1 %N A226206 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles of area > 1; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A226206 Alois P. Heinz, <a href="/A226206/b226206.txt">Antidiagonals n = 0..34, flattened</a> %e A226206 A(6,4) = A(4,6) = 3: %e A226206 ._._._._._._. ._._._._._._. ._._._._._._. %e A226206 | | | | | | | | | | %e A226206 |___|___|___| | |___| |___| | %e A226206 | | | | | | | | | | %e A226206 |___|___|___| |_______|___| |___|_______| . %e A226206 Square array A(n,k) begins: %e A226206 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A226206 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A226206 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ... %e A226206 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, ... %e A226206 1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 8, ... %e A226206 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, ... %e A226206 1, 0, 1, 1, 3, 2, 7, 7, 16, 19, 40, ... %e A226206 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 2, ... %e A226206 1, 0, 1, 0, 5, 0, 16, 0, 48, 0, 160, ... %e A226206 1, 0, 0, 1, 0, 0, 19, 0, 0, 50, 17, ... %e A226206 1, 0, 1, 0, 8, 1, 40, 2, 160, 17, 796, ... %e A226206 ... %p A226206 b:= proc(n, l) option remember; local i, k, s, t; %p A226206 if max(l[])>n then 0 elif n=0 or l=[] then 1 %p A226206 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) %p A226206 else for k do if l[k]=0 then break fi od; s:=0; %p A226206 for i from k+1 to nops(l) while l[i]=0 do s:=s+ %p A226206 b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)]) %p A226206 od; s %p A226206 fi %p A226206 end: %p A226206 A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])): %p A226206 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A226206 b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which [Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k+1, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join [l[[1 ;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1 ;; -1]] ]]]; s]]; a [n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 11 2013, translated from Maple *) %Y A226206 Columns (or rows) k=0-12 give: A000012, A000007, A059841, A079978, A079977, A226369, A226370, A226371, A226372, A226373, A226374, A226375, A226376. %Y A226206 Main diagonal gives A347800. %Y A226206 Cf. A219924. %K A226206 nonn,tabl %O A226206 0,41 %A A226206 _Alois P. Heinz_, May 31 2013