A226210 a(n) is the Zeckendorf distance between n and Fibonacci(n).
0, 1, 1, 2, 0, 3, 6, 2, 5, 8, 11, 12, 6, 9, 12, 15, 16, 19, 20, 21, 13, 16, 19, 22, 23, 26, 27, 28, 31, 32, 33, 34, 35, 25, 28, 31, 34, 35, 38, 39, 40, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 45, 48, 51, 54, 55, 58, 59, 60, 63, 64, 65, 66, 67, 70
Offset: 1
Examples
7 = 5 + 2 -> 3 + 1 -> 2, and 13 -> 8 -> 5 -> 3 -> 2. The total number of Zeckendorf downshifts (i.e., arrows) is 6, so that a(7) = D(7,F(7)) = 6.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..150
Programs
-
Mathematica
zeck[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, z = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[z, 1]; t = t - Fibonacci[k], AppendTo[z, 0]]; k--]; If[n > 0 && z[[1]] == 0, Rest[z], z]]; d[n1_, n2_] := Module[{z1 = zeck[n1], z2 = zeck[n2]}, Length[z1] + Length[z2] - 2 (NestWhile[# + 1 &, 1, z1[[#]] == z2[[#]] &, 1, Min[{Length[z1], Length[z2]}]] - 1)]; lst = Map[d[#, Fibonacci[#]] &, Range[100]] (* Peter J. C. Moses, May 30 2013 *)
Comments