cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226224 The largest value of k in base n for which the sum of digits of k = sqrt(k).

Original entry on oeis.org

1, 25, 9, 64, 100, 144, 49, 64, 81, 225, 121, 441, 169, 441, 441, 256, 289, 324, 361, 1296, 1296, 484, 529, 1089, 625, 676, 729, 2401, 841, 2601, 961, 1024, 3025, 1156, 2500, 4096, 1369, 1444, 4356, 3136, 1681, 4900, 1849, 5929, 3025, 2116, 2209, 6561, 2401
Offset: 2

Views

Author

Keywords

Comments

There are no values of k in base n with more than 3 digits. Proof: such a value with d digits would need to meet the criterion d*(n-1)>=sqrt(n)^d which establishes an upper limit of 4 digits for 2<=n<=6 and 3 for n>6. Because there are no four digit values of k in bases 2 through 6, k has a maximum of three digits in all bases.
Because k must be a square, there are only sqrt(n)^3 possible values in any base.
From the above, it can be shown that for three-digit fixed points of the form xyz, x <= 6; also x<=4 for n>846. These theoretical upper limits are statistically unlikely, and in fact of the 86356 solutions in bases 2 to 10000, only 6.5% of them begin with 2, and none begin with 3 through 6.
a(n)=1 iff A226087(n)=1. Conjecture: this occurs exactly once -- in base 2.

Examples

			For a(16) the solutions are the square numbers {1, 36=6^2, 100=10^2, 225=15^2, 441=21^2} because in base 16 they are written as {1, 24, 64, E1, 1B9} and 1 = 1, 6 = 2+4, 10 = 6+4, 15 = 14+1, and 21 = 1+11+9.
		

Crossrefs

Programs

  • R
    for(n in 2:500) cat("Base",n,":",which(sapply((1:(ifelse(n>6,7,1)*n^ifelse(n>6,1,2)))^2, function(x) sum(inbase(x,n))==sqrt(x)))^2, "\n")