This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226271 #21 May 12 2016 02:52:36 %S A226271 1,4,6,9,14,22,35,56,90,145,234,378,611,988,1598,2585,4182,6766,10947, %T A226271 17712,28658,46369,75026,121394,196419,317812,514230,832041,1346270, %U A226271 2178310,3524579,5702888,9227466,14930353,24157818,39088170,63245987,102334156,165580142 %N A226271 Index of 1/n in the Fibonacci (or rabbit) ordering of the positive rationals. %C A226271 The Fibonacci ordering of the rationals (cf. A226080) is the sequence of rationals produced from the initial vector [1] by appending iteratively the new rationals obtained by applying the map t-> (t+1, 1/t) to the vector (cf. example). %C A226271 Apart from initial terms, the same as A001611=(1, 2, 2, 3, 4, 6,...), A020706=(4,6,9,...), A048577=(3, 4, 6, ...), A000381=(2, 3, 4, ...). %H A226271 Colin Barker, <a href="/A226271/b226271.txt">Table of n, a(n) for n = 1..1000</a> %H A226271 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1). %F A226271 a(n) = 2*a(n-1)-a(n-3) for n>4. G.f.: -x*(2*x^3+2*x^2-2*x-1) / ((x-1)*(x^2+x-1)). - _Colin Barker_, Jun 03 2013 %F A226271 a(n) = 1+(2^(-1-n)*((1-sqrt(5))^n*(-3+sqrt(5))+(1+sqrt(5))^n*(3+sqrt(5))))/sqrt(5) for n>1. - _Colin Barker_, May 11 2016 %F A226271 E.g.f.: -2*(1 + x) + exp(x) + (3*sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(x/2)/5. - _Ilya Gutkovskiy_, May 11 2016 %e A226271 Starting from the vector [1] and applying the map t->(1+t,1/t), we get [2,1] (but ignore the number 1 which already occurred earlier), then [3,1/2], then [4,1/3,3/2,2] (where we ignore 2), etc. This yields the sequence (1,2,3,1/2,4,1/3,3/2,5,1/4,4/3,5/2,2/3,....) The unit fractions 1=1/1, 1/2, 1/3, ... occur at positions 1,4,6,9,... %t A226271 LinearRecurrence[{2,0,-1},{1,4,6,9},40] (* _Harvey P. Dale_, Feb 04 2016 *) %o A226271 (PARI) A226271(n)=if(n>1,fibonacci(n+2))+1 %o A226271 (PARI) {k=1;print1(s=1,",");U=Set(g=[1]);for(n=1,9,U=setunion(U,Set(g=select(f->!setsearch(U,f), concat(apply(t->[t+1,k/t],g))))); for(i=1,#g,numerator(g[i])==1&&print1(s+i","));s+=#g)} \\ for illustrative purpose %o A226271 (PARI) Vec(-x*(2*x^3+2*x^2-2*x-1)/((x-1)*(x^2+x-1)) + O(x^50)) \\ _Colin Barker_, May 11 2016 %K A226271 nonn,easy %O A226271 1,2 %A A226271 _M. F. Hasler_, Jun 01 2013