A226275
Number of new rationals produced at the n-th iteration by applying the map t -> {t+1, -1/t} to nonzero terms, starting with S[0] = {1}.
Original entry on oeis.org
1, 2, 3, 3, 5, 7, 10, 15, 22, 32, 47, 69, 101, 148, 217, 318, 466, 683, 1001, 1467, 2150, 3151, 4618, 6768, 9919, 14537, 21305, 31224, 45761, 67066, 98290, 144051, 211117, 309407, 453458, 664575, 973982, 1427440, 2092015, 3065997, 4493437, 6585452, 9651449
Offset: 0
The terms produced as described above are (grouped by iteration, including the starting value 1 = iteration 0): [1], [2, -1], [3, -1/2, 0], [4, -1/3, 1/2], [5, -1/4, 2/3, 3/2, -2], [6, -1/5, 3/4, 5/3, -3/2, 5/2, -2/3],[7, -1/6, 4/5, 7/4, -4/3, 8/3, -3/5, 7/2, -2/5, 1/3],[8, -1/7, 5/6, 9/5, -5/4, 11/4, -4/7, 11/3, -3/8, 2/5, 9/2, -2/7, 3/5, 4/3, -3], ...
A226274
Position of 1/n in the ordering of the rationals given by application of the map t -> (1+t,-1/t), cf. A226130.
Original entry on oeis.org
1, 9, 31, 100, 317, 1000, 3150, 9918, 31223, 98289, 309406, 973981, 3065996, 9651448, 30381786, 95638797, 301061279, 947710512, 2983297009, 9391117780, 29562290606, 93059106094, 292940670339, 922147653681, 2902827709802, 9137808548505, 28764898718296, 90548996937472
Offset: 1
Starting with [1], applying the map t->(1+t,-1/t) to the (most recently obtained) vector and discarding the numbers occurring earlier, one gets the sequence (grouped by "generation"): [1], [2, -1], [3, -1/2, 0], [4, -1/3, 1/2], [5, -1/4, 2/3, 3/2, -2], [6, -1/5, 3/4, 5/3, -3/2, 5/2, -2/3], [7, -1/6, 4/5, 7/4, -4/3, 8/3, -3/5, 7/2, -2/5, 1/3], [8, -1/7, 5/6, 9/5, -5/4, 11/4, -4/7, 11/3, -3/8, 2/5, 9/2, -2/7, 3/5, 4/3, -3],...
The unit fractions 1/1, 1/2, 1/3, 1/4,... occur at positions 1, 9(=1+2+3+3), 31(=9+5+7+10), 100(=31+15+22+32), ...
-
{print1([s=1]", ");U=Set(g=[1]); for(n=1,29,U=setunion(U,Set(g=select(f->!setsearch(U,f), concat(apply(t->[t+1,if(t,-1/t)],g))))); for(i=1,#g, numerator(g[i])==1&&print1(s+i/*",g[i],*/","));s+=#g)} /* illustrative purpose only */
Showing 1-2 of 2 results.
Comments