This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226272 #5 Jul 09 2013 14:59:55 %S A226272 1,1,4,27,256,3125,46656,823543,16777216,387420489,0,1,1,1,2,4,1,3,27, %T A226272 1,4,256,1,5,3125,1,6,46656,1,7,823543,1,8,16777216,1,9,387420489,0,1, %U A226272 4,1,2,4,4,4,8,9,27,4,16,256,4,25,32,3125,4,36,64,46656 %N A226272 Distinct numbers that can be written as u^v, where u and v are not necessarily distinct digits of n in decimal representation, table read by rows. %C A226272 Row lengths: A226273; %C A226272 T(n,k) <= 9^9 = 387420489; %C A226272 largest term of n-th row = A054055(n)^A054055(n); %C A226272 row(n) is contained in row(10*n+d), 0 <= d <= 9; %C A226272 see A226277 for numbers m such that m is contained in m-th row. %H A226272 Reinhard Zumkeller, <a href="/A226272/b226272.txt">Rows n = 0..1000 of triangle, flattened</a> %e A226272 . n row(n) A226273(n) %e A226272 . --- --------------------- ----------------------- ---------- %e A226272 . 0 [1] {0^0} 1 %e A226272 . 1 [1] {1^1} 1 %e A226272 . 2 [4] {2^2} 1 %e A226272 . 3 [27] {3^3} 1 %e A226272 . 4 [256] {4^4} 1 %e A226272 . 5 [3125] {5^5} 1 %e A226272 . 6 [46656] {6^6} 1 %e A226272 . 7 [823543] {7^7} 1 %e A226272 . 8 [16777216] {8^8} 1 %e A226272 . 9 [387420489] {9^9} 1 %e A226272 . 10 [0,1] {0^1, 0^0=1^0=1^1} 2 %e A226272 . 11 [1] = row(1) {1^1} 1 %e A226272 . 12 [1,2,4] {1^1=1^2, 2^1, 2^2} 3 %e A226272 . 13 [1,3,27] {1^1=1^3, 3^1, 3^3} 3 %e A226272 . 14 [1,4,256] {1^1=1^4, 4^1, 4^4} 3 %e A226272 . 15 [1,5,3125] {1^1=1^5, 5^1, 5^5} 3 %e A226272 . 16 [1,6,46656] {1^1=1^6, 6^1, 6^6} 3 %e A226272 . 17 [1,7,823543] {1^1=1^7, 7^1, 7^7} 3 %e A226272 . 18 [1,8,16777216] {1^1=1^8, 8^1, 8^8} 3 %e A226272 . 19 [1,9,387420489] {1^1=1^9, 9^1, 9^9} 3 %e A226272 . 20 [0,1,4] {0^2, 0^0=2^0, 2^2} 3 %e A226272 . 21 [1,2,4] = row(12) {1^1=1^2, 2^1, 2^2} 3 %e A226272 . 22 [4] = row(2) {2^2} 1 %e A226272 . 23 [4,8,9,27] {2^2, 2^3, 3^2, 3^3} 4 %e A226272 . 24 [4,16,256] {2^2, 2^4=4^2, 4^4} 3 %e A226272 . 25 [4,25,32,3125] {2^2, 5^2, 2^5, 5^5} 4 %e A226272 . 26 [4,36,64,46656] {2^2, 6^6, 2^6, 6^6} 4 %e A226272 . 27 [4,49,128,823543] {2^2, 7^2, 2^7, 7^7} 4 %e A226272 . 28 [4,64,256,16777216] {2^2, 8^2, 2^8, 8^8} 4 %e A226272 . 29 [4,81,512,387420489] {2^2, 9^2, 2^9, 9^9} 4 %e A226272 . 30 [0,1,27] {0^3, 0^0=3^0, 3^3} 3 . %o A226272 (Haskell) %o A226272 import Data.List (nub, sort) %o A226272 a226272 n k = a226272_tabf !! n !! k %o A226272 a226272_row n = sort $ nub [u ^ v | u <- digs, v <- digs] %o A226272 where digs = nub $ map (read . return) $ show n %o A226272 a226272_tabf = map a226272_row [0..] %Y A226272 Cf. A000312. %K A226272 nonn,base,tabf %O A226272 0,3 %A A226272 _Reinhard Zumkeller_, Jul 09 2013