cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226272 Distinct numbers that can be written as u^v, where u and v are not necessarily distinct digits of n in decimal representation, table read by rows.

This page as a plain text file.
%I A226272 #5 Jul 09 2013 14:59:55
%S A226272 1,1,4,27,256,3125,46656,823543,16777216,387420489,0,1,1,1,2,4,1,3,27,
%T A226272 1,4,256,1,5,3125,1,6,46656,1,7,823543,1,8,16777216,1,9,387420489,0,1,
%U A226272 4,1,2,4,4,4,8,9,27,4,16,256,4,25,32,3125,4,36,64,46656
%N A226272 Distinct numbers that can be written as u^v, where u and v are not necessarily distinct digits of n in decimal representation, table read by rows.
%C A226272 Row lengths: A226273;
%C A226272 T(n,k) <= 9^9 = 387420489;
%C A226272 largest term of n-th row = A054055(n)^A054055(n);
%C A226272 row(n) is contained in row(10*n+d), 0 <= d <= 9;
%C A226272 see A226277 for numbers m such that m is contained in m-th row.
%H A226272 Reinhard Zumkeller, <a href="/A226272/b226272.txt">Rows n = 0..1000 of triangle, flattened</a>
%e A226272 .   n          row(n)                                    A226273(n)
%e A226272 . ---   ---------------------   -----------------------  ----------
%e A226272 .   0   [1]                     {0^0}                          1
%e A226272 .   1   [1]                     {1^1}                          1
%e A226272 .   2   [4]                     {2^2}                          1
%e A226272 .   3   [27]                    {3^3}                          1
%e A226272 .   4   [256]                   {4^4}                          1
%e A226272 .   5   [3125]                  {5^5}                          1
%e A226272 .   6   [46656]                 {6^6}                          1
%e A226272 .   7   [823543]                {7^7}                          1
%e A226272 .   8   [16777216]              {8^8}                          1
%e A226272 .   9   [387420489]             {9^9}                          1
%e A226272 .  10   [0,1]                   {0^1, 0^0=1^0=1^1}             2
%e A226272 .  11   [1]  = row(1)           {1^1}                          1
%e A226272 .  12   [1,2,4]                 {1^1=1^2, 2^1, 2^2}            3
%e A226272 .  13   [1,3,27]                {1^1=1^3, 3^1, 3^3}            3
%e A226272 .  14   [1,4,256]               {1^1=1^4, 4^1, 4^4}            3
%e A226272 .  15   [1,5,3125]              {1^1=1^5, 5^1, 5^5}            3
%e A226272 .  16   [1,6,46656]             {1^1=1^6, 6^1, 6^6}            3
%e A226272 .  17   [1,7,823543]            {1^1=1^7, 7^1, 7^7}            3
%e A226272 .  18   [1,8,16777216]          {1^1=1^8, 8^1, 8^8}            3
%e A226272 .  19   [1,9,387420489]         {1^1=1^9, 9^1, 9^9}            3
%e A226272 .  20   [0,1,4]                 {0^2, 0^0=2^0, 2^2}            3
%e A226272 .  21   [1,2,4]  = row(12)      {1^1=1^2, 2^1, 2^2}            3
%e A226272 .  22   [4]  = row(2)           {2^2}                          1
%e A226272 .  23   [4,8,9,27]              {2^2, 2^3, 3^2, 3^3}           4
%e A226272 .  24   [4,16,256]              {2^2, 2^4=4^2, 4^4}            3
%e A226272 .  25   [4,25,32,3125]          {2^2, 5^2, 2^5, 5^5}           4
%e A226272 .  26   [4,36,64,46656]         {2^2, 6^6, 2^6, 6^6}           4
%e A226272 .  27   [4,49,128,823543]       {2^2, 7^2, 2^7, 7^7}           4
%e A226272 .  28   [4,64,256,16777216]     {2^2, 8^2, 2^8, 8^8}           4
%e A226272 .  29   [4,81,512,387420489]    {2^2, 9^2, 2^9, 9^9}           4
%e A226272 .  30   [0,1,27]                {0^3, 0^0=3^0, 3^3}            3 .
%o A226272 (Haskell)
%o A226272 import Data.List (nub, sort)
%o A226272 a226272 n k = a226272_tabf !! n !! k
%o A226272 a226272_row n = sort $ nub [u ^ v | u <- digs, v <- digs]
%o A226272                 where digs = nub $ map (read . return) $ show n
%o A226272 a226272_tabf = map a226272_row [0..]
%Y A226272 Cf. A000312.
%K A226272 nonn,base,tabf
%O A226272 0,3
%A A226272 _Reinhard Zumkeller_, Jul 09 2013