This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226300 #19 Nov 04 2019 02:19:30 %S A226300 2,10,114,1322,16428,214660,2897424,40046134,563527294,8042361426, %T A226300 116083167058,1691193906828,24830916046462,366990100477712, %U A226300 5454733737618820,81475220265330158,1222209564554562110,18404140554678144630,278069131820486935046,4214088001120913287256,64037903464421065585244 %N A226300 a(n) = A182107(4n). %H A226300 Alejandro Erickson, Frank Ruskey, <a href="http://arxiv.org/abs/1304.0070">Enumerating maximal tatami mat coverings of square grids with v vertical dominoes</a>, arXiv:1304.0070 [math.CO], 2013. %t A226300 S[0, 0] = 1; S[0, _] = 0; S[n_, k_] /; k < 0 || k > Binomial[n + 1, 2] = 0; S[n_, k_] := S[n, k] = S[n - 1, k] + S[n - 1, k - n]; %t A226300 b[n_] := 2 Sum[Sum[k2 = (n^2 - n)/4 - (n - i - 1) - k1; S[n - i - 2, k1]* S[i - 1, k2], {k1, 0, (n^2 - n)/4 - (n - i - 1)}] + Sum[k2 = (n^2 - n)/4; S[Floor[(n - 2)/2], k1]*S[Floor[(n - 2)/2], k2], {k1, 0, (n^2 - n)/4}], {i, 1, Floor[(n - 1)/2]}]; %t A226300 a[n_] := b[4n]; %t A226300 Table[a[n], {n, 1, 21}] (* _Jean-François Alcover_, Feb 23 2019 *) %Y A226300 Cf. A182107, A226301. %K A226300 nonn %O A226300 1,1 %A A226300 _N. J. A. Sloane_, Jun 06 2013