cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A226306 Denominator of Product_{d|n} b(d)^Moebius(n/d), where b() = A100371().

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 3, 1, 1, 1, 17, 1, 1, 3, 3, 1, 1, 3, 5, 3, 1, 1, 85, 1, 1, 7, 1, 15, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 17, 1, 1, 1, 325, 15, 1, 3, 5, 1, 1, 21, 3, 3, 1, 3, 257, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 07 2013

Keywords

Examples

			1, 1, 3, 3, 15, 1, 63, 5, 21, 1, 1023, 5/3, 4095, 1, 17/3, 17, 65535, 1, 262143, 17/3, 65/3, 1, 4194303, 17/5, 69905, 1, 4161, 65/3, 268435455, 1, 1073741823, 257, 1025/3, 1, 53261/3, 13, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Product[(2^EulerPhi[d] - 1)^MoebiusMu[n/d], {d, Divisors[n]}]], {n, 100}] (* Indranil Ghosh, Apr 14 2017 *)
  • Python
    from sympy import divisors, totient, mobius, prod
    def a(n): return prod((2**totient(d) - 1)**mobius(n//d) for d in divisors(n)).denominator
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Apr 14 2017
Showing 1-1 of 1 results.