cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226365 Composite numbers such that Sum_{i=1..k} (1 + 1/p_i) - Product_{i=1..k} (1 + 1/p_i) is an integer, where p_i are the k prime factors of n (with multiplicity).

Original entry on oeis.org

152, 432, 1620, 1728, 3456, 4752, 22464, 46656, 80892, 139968, 186624, 237168, 326592, 746496, 1651968, 2052864, 2426112, 2985984, 5971968, 10257408, 12177216, 12690432, 14048240, 14183424, 20155392, 20901888, 26127360, 38817792
Offset: 1

Views

Author

Paolo P. Lava, Jun 12 2013

Keywords

Comments

The numbers of the sequence are the solution of the differential equation n' = (a-k)*n + b, which can also be written as A003415(n) = (a-k)*n + A003958(n), where k is the number of prime factors of n, and a is the integer Sum_{i=1..k} (1 + 1/p_i) - Product_{1=1..k} (1 + 1/p_i).
The numbers of the sequence satisfy also Sum_{i=1..k} (1 - 1/p_i) + Product_{i=1..k} (1 + 1/p_i) = some integer.

Examples

			237168 has prime factors 2, 2, 2, 2, 3, 3, 3, 3, 3, 61. 4*(1 + 1/2) + 5*(1 + 1/3) + (1 + 1/61) = 2504/183 is the sum over the 1 + 1/p_i. (1 + 1/2)^4 * (1 + 1/3)^5 * (1 + 1/61) = 3968/183 is the product of the 1 + 1/p_i. The difference over sum and product is 2504/183 - 3968/183 = -8, an integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA226365:=proc(q) local a,d,n,p;
    for n from 1 to q do if not isprime(n) then p:=ifactors(n)[2];
    a:=add(op(2,d)+op(2,d)/op(1,d),d=p)-mul((1+1/op(1,d))^op(2,d),d=p);
    if type(a,integer) then print(n); fi; fi;
    od; end: ListA226365(10^9);