cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226377 Lucas numbers differences triangle T(n,k), k<=n, where column k+1 holds the k-th differences of A000204, read by rows.

This page as a plain text file.
%I A226377 #9 Jul 31 2013 22:24:16
%S A226377 1,3,2,4,1,-1,7,3,2,3,11,4,1,-1,-4,18,7,3,2,3,7,29,11,4,1,-1,-4,-11,
%T A226377 47,18,7,3,2,3,7,18,76,29,11,4,1,-1,-4,-11,-29,123,47,18,7,3,2,3,7,18,
%U A226377 47,199,76,29,11,4,1,-1,-4,-1,-29,-76,-199
%N A226377 Lucas numbers differences triangle T(n,k), k<=n, where column k+1 holds the k-th differences of A000204, read by rows.
%C A226377 Consecutive columns (i.e. k =1,2,3...) shift the Lucas sequence (A000204) down by 2 indices.
%C A226377 Diagonal (n=k) produces A061084, and Lucas numbers at increasingly negative indices for n=k>2.
%C A226377 Row sums equal A203976(n) for n=>1, which equals Lucas numbers  A000204(n) if n is odd, and 5 * A000045(2*n) (Fibonacci) if n is even.
%C A226377 Compare A227431 which is a differences triangle for the Fibonacci sequence A000045.
%F A226377 T(n,1) = A000204(n) for n>0, T(n,k) = T(n,k-1) - T(n-1,k-1).
%e A226377 Triangle begins:
%e A226377 1;
%e A226377 3,  2;
%e A226377 4,  1, -1;
%e A226377 7,  3,  2,  3;
%e A226377 11,  4,  1, -1, -4;
%e A226377 18,  7,  3,  2,  3,  7;
%e A226377 29, 11,  4,  1, -1, -4, -11;
%e A226377 47, 18,  7,  3,  2,  3,   7,  18;
%e A226377 76, 29, 11,  4,  1, -1,  -4, -11, -29;
%e A226377 ...
%Y A226377 Cf. A000204, A203976
%K A226377 sign,tabl
%O A226377 1,2
%A A226377 _Richard R. Forberg_, Jul 31 2013