This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226384 #17 Apr 09 2020 09:58:35 %S A226384 1,2,3,6,7,11,12,14,22,23,24,28,31,43,44,46,47,48,56,59,62,67,71,79, %T A226384 83,86,88,92,94,96,103,107,112,118,124,131,134,139,142,158,166,167, %U A226384 172,176,179,184,188,191,192,206,211,214,223,224,227,236,239,248,262 %N A226384 Numbers k such that rad(phi(k)) = phi(rad(k)). %C A226384 Numbers k such that A080400(k) = A173557(k). - _Amiram Eldar_, Apr 09 2020 %H A226384 Charles R Greathouse IV, <a href="/A226384/b226384.txt">Table of n, a(n) for n = 1..10000</a> %p A226384 with(numtheory): %p A226384 rad:= n-> mul(i, i=factorset(n)): %p A226384 a:= proc(n) option remember; local k; for k from 1+a(n-1) %p A226384 while phi(rad(k))<>rad(phi(k)) do od; k %p A226384 end: a(0):=0: %p A226384 seq(a(n), n=1..80); # _Alois P. Heinz_, Jun 07 2013 %t A226384 rad[n_] := Product[fa[n][[i, 1]], {i, %t A226384 Length[fa[n]]}]; fa = FactorInteger; %t A226384 Select[Range[500], rad[EulerPhi[#]] == EulerPhi[rad[#]] &] %o A226384 (PARI) is(n)=my(f=factor(n)); lcm(factor(eulerphi(f))[,1])==prod(i=1,#f~, f[i,1]-1) \\ _Charles R Greathouse IV_, Nov 13 2013 %Y A226384 Cf. A000010, A007947, A080400, A173557. %K A226384 nonn %O A226384 1,2 %A A226384 _José María Grau Ribas_, Jun 05 2013