A226432 The number of simple permutations of length n in a particular geometric grid class.
1, 2, 0, 2, 3, 7, 13, 25, 46, 84, 151, 269, 475, 833, 1452, 2518, 4347, 7475, 12809, 21881, 37274, 63336, 107375, 181657, 306743, 517057, 870168, 1462250, 2453811, 4112479, 6884101, 11510809, 19226950, 32084028, 53489287, 89097893, 148290067, 246615425, 409835844, 680609086
Offset: 1
Links
- Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], (2013).
- Jay Pantone, Picture of the geometric grid class
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Mathematica
Join[{1, 2}, LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 7}, 40]] (* Jean-François Alcover, Jul 21 2018 *)
-
PARI
x='x+O('x^66); Vec(x+2*x^2+(x^4*(1-x)*(2+x))/((1-x-x^2)^2) ) \\ Joerg Arndt, Jun 19 2013
Formula
G.f.: x+2*x^2+ x^4*(1-x)*(2+x)/(1-x-x^2)^2 (corrected, Joerg Arndt, Jun 26 2013)
Comments