A226433 The number of permutations of length n in a particular geometric grid class.
1, 2, 6, 19, 56, 157, 428, 1149, 3058, 8097, 21370, 56279, 147990, 388727, 1020252, 2676139, 7016372, 18389377, 48184544, 126229809, 330635974, 865940277, 2267709166, 5938235819, 15549095466, 40713244907, 106599027888, 279100615999, 730736374568, 1913175616597
Offset: 1
Keywords
Links
- Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], 2013-2015.
- Jay Pantone, Picture of the geometric grid class
- Index entries for linear recurrences with constant coefficients, signature (7,-18,21,-11,2)
Programs
-
Mathematica
Join[{1}, LinearRecurrence[{7, -18, 21, -11, 2}, {2, 6, 19, 56, 157}, 29]] (* Jean-François Alcover, Oct 30 2018 *)
-
PARI
x='x+O('x^66); Vec((x-5*x^2+10*x^3-8*x^4+x^6)/((1-x)^2*(1-2*x)*(1-3*x+x^2))) \\ Joerg Arndt, Jun 19 2013
Formula
G.f.: x*(1-5*x+10*x^2-8*x^3+x^5)/((1-x)^2*(1-2*x)*(1-3*x+x^2)).
a(n) = 2*A001519(n)-2^(n-2)-n+1, n>1. - R. J. Mathar, Aug 31 2013
Comments