cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226434 The number of sum decomposable permutations which avoid the patterns 3124 and 4312.

Original entry on oeis.org

0, 1, 3, 10, 37, 146, 595, 2456, 10167, 42027, 173201, 711397, 2912633, 11891030, 48425597, 196790382, 798251109, 3232928429, 13075849791, 52825304031, 213196622183, 859690304703, 3463979709111, 13948292729231, 56132430446203, 225778880966297, 907726113188331, 3647961305524521, 14655086058873287, 58855311286307572
Offset: 1

Views

Author

Jay Pantone, Sep 03 2013

Keywords

Examples

			Example: a(4)=10 because there are 10 sum decomposable permutations of length 4 which avoid the patterns 3124 and 4312.
		

Formula

G.f.: -(8*x^5 - 16*x^4 + 19*x^3 - 8*x^2 - sqrt(-4*x + 1)*(2*x^4 + x^3 - 4*x^2 + x) + x)/(12*x^4 - 31*x^3 + 27*x^2 + sqrt(-4*x + 1)*(4*x^4 - 13*x^3 + 15*x^2 - 7*x + 1) - 9*x + 1)
Conjecture: +(95*n+537)*(n+2)*a(n) +(95*n^2-16421*n-14748) *a(n-1) +(-6403*n^2+124495*n-60066) *a(n-2) +(21565*n^2-354883*n+596496) *a(n-3) +2*(-5092*n^2+138877*n-395970) *a(n-4) +8*(-2470*n^2+11113*n+12744) *a(n-5) +192*(38*n-67)*(2*n-13)*a(n-6)=0. - R. J. Mathar, Jun 14 2016