cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226442 a(n) = smallest index m such that smallest prime factor of m-th triangular number is prime(n).

This page as a plain text file.
%I A226442 #7 Jun 07 2013 12:31:39
%S A226442 3,2,10,13,22,298,526,37,46,58,61,73,82,3397,2866,106,3481,3721,5293,
%T A226442 5041,7081,157,166,178,193,10201,14317,23326,23761,226,17398,262,
%U A226442 19042,277,24286,38806,313,45802,29893,346,358,32761,382,46126,52993,397,421,68461
%N A226442 a(n) = smallest index m such that smallest prime factor of m-th triangular number is prime(n).
%C A226442 Or, smallest proper divisor of m-th triangular number is prime(n).
%C A226442 The curve is bimodal. Why? - _T. D. Noe_, Jun 07 2013
%F A226442 A069901(a(n)) =  A000040(n).
%e A226442 3rd triangular number, A000217(3) = 6 = 2*3, 2nd triangular number, A000217(2) = 3,
%e A226442 10th triangular number, A000217(10) = 55 = 5*11, 13th triangular number, A000217(13) = 91 =7*13.
%t A226442 nn = 50; t = Table[0, {nn}]; tri = 1; n = 1; found = 0; While[found < nn, n++; tri = tri + n; p = FactorInteger[tri][[1, 1]]; pi = PrimePi[p]; If[pi <= nn && t[[pi]] == 0, t[[pi]] = n; found++]]; t (* _T. D. Noe_, Jun 07 2013 *)
%Y A226442 Cf. A000040, A000217, A069901.
%K A226442 nonn
%O A226442 1,1
%A A226442 _Zak Seidov_, Jun 06 2013