cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226443 Number of distinct shadow transforms for sequences of length n.

This page as a plain text file.
%I A226443 #19 Sep 17 2019 02:53:19
%S A226443 1,1,1,3,12,48,288,1356,10848,70896,588480
%N A226443 Number of distinct shadow transforms for sequences of length n.
%H A226443 Lorenz Halbeisen and Norbert Hungerbuehler, <a href="http://math.berkeley.edu/~halbeis/publications/pdf/seq.pdf">Number theoretic aspects of a combinatorial function</a>, Notes on Number Theory and Discrete Mathematics 5 (1999), 138-150.
%H A226443 Lorenz Halbeisen, <a href="http://www.iam.fmph.uniba.sk/amuc/_vol-74/_no_2/_halbeisen/halbeisen.html">A number-theoretic conjecture and its implication for set theory</a>, Acta Math. Univ. Comenianae 74(2) (2005), 243-254.
%H A226443 OEIS Wiki, <a href="https://oeis.org/wiki/Shadow_transform">Shadow transform</a>.
%F A226443 a(p+1) = (p+1)a(p) where p is prime.
%F A226443 a(n-1) <= a(n) <= n*a(n-1).
%e A226443 The sequence (i, j, k) has shadow transform (0, 1, m) where m is the number of even numbers in {i, j}, so a(3) = 3.
%o A226443 (PARI) sh(v)=vector(#v,i,my(n=i-1);sum(j=1,n,v[j]%n==0));
%o A226443 a(n)={
%o A226443   my(L=log(n+.5), t=primes(primepi(n)), D=divisors(prod(i=1,#t, t[i]^(L\log(t[i])))), nd=#D, v=[]);
%o A226443     for(i=1,nd^(n-1),
%o A226443         my(s=sh(vector(n,j,D[i\nd^(j-1)%nd+1])));
%o A226443         if(!setsearch(v,s),
%o A226443             v=vecsort(concat(v,[s]))
%o A226443         )
%o A226443     );
%o A226443     #v
%o A226443 };
%o A226443 (PARI) v=[]; fordiv(72,a, fordiv(72,b, fordiv(72,c, fordiv(72,d, fordiv(72,e, fordiv(72,f, fordiv(72,g, fordiv(72,h, fordiv(9,i, u=sh([a,b,c,d,e,f,g,h,i,0]); if(!vecsearch(v,u), v=vecsort(concat(v,[u])))))))))))); (5+1)*(7+1)*#v \\ computes a(10)
%Y A226443 Cf. A000522, A056793.
%K A226443 nonn,hard,more
%O A226443 0,4
%A A226443 _Charles R Greathouse IV_, Jun 06 2013