This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226447 #68 Sep 08 2022 08:46:05 %S A226447 1,-1,1,-2,4,-5,9,-15,23,-38,62,-99,161,-261,421,-682,1104,-1785,2889, %T A226447 -4675,7563,-12238,19802,-32039,51841,-83881,135721,-219602,355324, %U A226447 -574925,930249,-1505175,2435423,-3940598,6376022,-10316619,16692641,-27009261,43701901,-70711162,114413064,-185124225 %N A226447 Expansion of (1-x+x^3)/(1-x^2+2*x^3-x^4). %C A226447 a(n) and its differences: %C A226447 . 1, -1, 1, -2, 4, -5, 9, -15, 23, -38, ... %C A226447 . -2, 2, -3, 6, -9, 14, -24, 38, -61, 100, ... %C A226447 . 4, -5, 9, -15, 23, -38, 62, -99, 161, -261, ... %C A226447 . -9, 14, -24, 38, -61, 100, -161, 260, -422, 682, ... %C A226447 . 23, -38, 62, -99, 161, -261, 421, -682, 1104, -1785, ... %C A226447 . -61, 100, -161, 260, -422, 682, -1103, 1786, -2889, 4674, ... %C A226447 . 161, -261, 421, -682, 1104, -1785, 2889, -4675, 7563, -12238, ... %C A226447 The third row is the first shifted . %C A226447 The main diagonal is A001077(n). The fourth is -A001077(n+1). By "shifted" antidiagonals there are one 1, two 2's (-2 of the first row and 2), generally A001651(n) (-1)^n *A001077(n). %C A226447 a(n+1)/a(n) tends to A001622 (the golden ratio) as n -> infinity. %H A226447 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,-2,1). %F A226447 a(0)=1, a(1)=-1; for n>1, a(n) = a(n-2) - a(n-1) + A010892(n+2). %F A226447 a(n) = a(n-2) -2*a(n-3) +a(n-4). %F A226447 a(n) = A226956(-n). %F A226447 a(n+1) = A039834(n) - (-1)^n*A094686(n). %F A226447 a(n+6) - a(n) = 2*(-1)^n* A000032(n+3). %F A226447 a(2n+1) = -A226956(2n+1). %F A226447 G.f. ( -1+x-x^3 ) / ( (x^2-x-1)*(1-x+x^2) ). - _R. J. Mathar_, Jun 29 2013 %F A226447 2*a(n) = A010892(n+2)+A061084(n+1). - _R. J. Mathar_, Jun 29 2013 %t A226447 a[0] = 1; a[1] = -1; a[n_] := a[n] = a[n-2] - a[n-1] - {-1, 0, 1, 1, 0, -1}[[Mod[n+1, 6] + 1]]; Table[a[n], {n, 0, 41}] (* _Jean-François Alcover_, Jul 04 2013 *) %o A226447 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^3)/(1-x^2+2*x^3-x^4))); // _Bruno Berselli_, Jul 04 2013 %K A226447 sign,easy %O A226447 0,4 %A A226447 _Paul Curtz_, Jun 28 2013