A226456 Array by antidiagonals: D(m,n) = binary distance between m and n.
0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 1, 3, 3, 1, 2, 2, 3, 3, 0, 3, 3, 2, 3, 3, 1, 2, 2, 1, 3, 3, 3, 2, 1, 4, 0, 4, 1, 2, 3, 3, 2, 4, 4, 4, 4, 4, 4, 2, 3, 3, 2, 4, 1, 4, 0, 4, 1, 4, 2, 3, 3, 2, 4, 1, 3, 2, 2, 3, 1, 4, 2, 3, 3, 4, 4, 3, 3, 5, 0, 5
Offset: 1
Examples
Northwest corner of the distance table: 0 1 1 2 2 2 2 3 3 3 1 0 2 1 1 3 3 2 2 2 1 2 0 3 3 1 1 4 4 4 2 1 3 0 2 4 4 1 1 3 2 1 3 2 0 4 4 3 3 1 2 3 1 4 4 0 2 5 5 5 2 3 1 4 4 2 0 5 5 5 3 2 4 1 3 5 5 0 2 4 3 2 4 1 3 5 5 2 0 4 3 2 4 3 1 5 5 4 4 0 Row 9, column 6 is occupied by 5, meaning that D(9,6) = 5, a count of edges in the subgraph 9 -> 4 -> 2 -> 1 -> 3 ->6.
Links
- Clark Kimberling, Antidiagonals n=1..60, flattened
Programs
-
Mathematica
r = 1/2; f[x_] := Floor[r*x]; z = 20; g[x_] := FixedPointList[f, x]; u[x_] := Length[g[x]]; v[x_, y_] := Max[Intersection[g[x], g[y]]]; d[x_, y_] := u[x] + u[y] - 2*Length[g[v[x, y]]]; TableForm[Table[d[m, n], {m, 1, z}, {n, 1, z}]] (* A226456 array *) Flatten[Table[d[k, n + 1 - k], {n, 1, z}, {k, 1, n}]] (* A226456 sequence *) Table[d[n, n + 1], {n, 1, 100}] (* A101688 *) Table[d[n, 2^n], {n, 1, 100}] (* A226457 *)
Comments