A226473 a(n) is the first prime index where the gap between R(n), Riemann's prime counting function, and Pi(n), the exact prime counting function, is greater than n.
109, 556, 1327, 3296, 5380, 10343, 11767, 19202, 19361, 19371, 24121, 42863, 58243, 59453, 59473, 152959, 155809, 155863, 155893, 175594, 175618, 230393, 298545, 298557, 298974, 298986, 299277, 300072, 300135, 302547, 355093, 355111, 463171, 909917, 910219, 993762
Offset: 1
Keywords
Examples
RiemannR(109) = 27.4664... and PrimePi(109) = 29 give the first gap greater than 1, hence a(1) = 109.
References
- H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), page 35.
Links
- Eric Weisstein's World of Mathematics, Riemann Prime Counting Function.
Crossrefs
Cf. A057794.
Programs
-
Mathematica
Reap[For[n = 1; gap = 1, n < 10^6, n++, If[Abs[RiemannR[n] - PrimePi[n]] > gap, Print[{gap, n}]; Sow[n]; gap++]]][[2, 1]]