cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226477 Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.

This page as a plain text file.
%I A226477 #15 Jun 15 2021 02:02:20
%S A226477 1,3,9,11,33,99,27,37,111,333,999,101,303,909,1111,3333,9999,41,123,
%T A226477 271,369,813,2439,11111,33333,99999,7,13,21,39,63,77,91,117,143,189,
%U A226477 231,259,273,297,351,407,429,481,693,777,819,1001,1221,1287,1443,2079,2331,2457,2849,3003,3367,3663,3861,4329,5291,6993,8547,9009,10101,10989,12987,15873,25641,27027,30303,37037,47619,76923,90909,111111,142857,333333,999999
%N A226477 Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.
%C A226477 The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
%C A226477 The number of elements in row k is A059892(k).
%H A226477 Jianing Song, <a href="/A226477/b226477.txt">Rows n = 1..32, flattened</a>
%e A226477 The table T(k,m), m = 1..A059892(k), begins
%e A226477   1, 3, 9;
%e A226477   11, 33, 99;
%e A226477   27, 37, 111, 333, 999;
%e A226477   etc.
%p A226477 a:=[1,3,9]: S:={1,3,9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a),op(T minus S)]: S:=S union T; od: a;
%o A226477 (PARI) Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10,x))==n), v) \\ _Jianing Song_, Jun 15 2021
%Y A226477 Cf. A018282, A018766, A027894, A027893, A027892, A027891, A027890, A027889, A027895, A027896, A027897, A109933, A106305, A111117, A111211, A113116, A113522 (Divisors of 10^k - 1, k = 2..18), A059892, A084680.
%K A226477 nonn,base,tabf,easy
%O A226477 1,2
%A A226477 _Martin Renner_, Jun 08 2013