This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226477 #15 Jun 15 2021 02:02:20 %S A226477 1,3,9,11,33,99,27,37,111,333,999,101,303,909,1111,3333,9999,41,123, %T A226477 271,369,813,2439,11111,33333,99999,7,13,21,39,63,77,91,117,143,189, %U A226477 231,259,273,297,351,407,429,481,693,777,819,1001,1221,1287,1443,2079,2331,2457,2849,3003,3367,3663,3861,4329,5291,6993,8547,9009,10101,10989,12987,15873,25641,27027,30303,37037,47619,76923,90909,111111,142857,333333,999999 %N A226477 Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k. %C A226477 The k-th row always ends with 10^k - 1 = 99..99 (k times 9). %C A226477 The number of elements in row k is A059892(k). %H A226477 Jianing Song, <a href="/A226477/b226477.txt">Rows n = 1..32, flattened</a> %e A226477 The table T(k,m), m = 1..A059892(k), begins %e A226477 1, 3, 9; %e A226477 11, 33, 99; %e A226477 27, 37, 111, 333, 999; %e A226477 etc. %p A226477 a:=[1,3,9]: S:={1,3,9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a),op(T minus S)]: S:=S union T; od: a; %o A226477 (PARI) Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10,x))==n), v) \\ _Jianing Song_, Jun 15 2021 %Y A226477 Cf. A018282, A018766, A027894, A027893, A027892, A027891, A027890, A027889, A027895, A027896, A027897, A109933, A106305, A111117, A111211, A113116, A113522 (Divisors of 10^k - 1, k = 2..18), A059892, A084680. %K A226477 nonn,base,tabf,easy %O A226477 1,2 %A A226477 _Martin Renner_, Jun 08 2013