cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226479 Numbers n such that (sopf(n)*d(n))^2 = sigma(n) where sopf(n) = sum of distinct prime factors of n (A008472) and d(n) = number of divisors of n.

This page as a plain text file.
%I A226479 #5 Jun 09 2013 11:31:54
%S A226479 22446139,26116291,28097023,30236557,31090489,31124341,39618558,
%T A226479 41628195,49941589,51777957,61137673,62224039,66960589,71096795,
%U A226479 71334867,71585139,72304400,82266591,83045869,92346023,92837591,105183961,114762567,117908994,123563821
%N A226479 Numbers n such that (sopf(n)*d(n))^2 = sigma(n) where sopf(n) = sum of distinct prime factors of n (A008472) and d(n) = number of divisors of n.
%C A226479 Suggested by _N. J. A. Sloane_.
%H A226479 Donovan Johnson, <a href="/A226479/b226479.txt">Table of n, a(n) for n = 1..1000</a>
%e A226479 n = 22446139 = 31*67*101*107. sopf(n) = 31+67+101+107 = 306. d(n) = 16. (sopf(n)*d(n))^2 = (306*16)^2 = 23970816 = sigma(n).
%Y A226479 Cf. A000005, A000203, A006532, A008472, A126028, A226480.
%K A226479 nonn
%O A226479 1,1
%A A226479 _Donovan Johnson_, Jun 09 2013