This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226492 #55 Dec 28 2024 10:18:46 %S A226492 0,3,17,42,78,125,183,252,332,423,525,638,762,897,1043,1200,1368,1547, %T A226492 1737,1938,2150,2373,2607,2852,3108,3375,3653,3942,4242,4553,4875, %U A226492 5208,5552,5907,6273,6650,7038,7437,7847,8268,8700,9143,9597,10062,10538,11025,11523 %N A226492 a(n) = n*(11*n-5)/2. %C A226492 Sequences of numbers of the form n*(n*k - k + 6)/2: %C A226492 . k from 0 to 10, respectively: A008585, A055998, A005563, A045943, A014105, A005475, A033428, A022264, A033991, A062741, A147874; %C A226492 . k=11: a(n); %C A226492 . k=12: A094159; %C A226492 . k=13: 0, 3, 19, 48, 90, 145, 213, 294, 388, 495, 615, 748, 894, ...; %C A226492 . k=14: 0, 3, 20, 51, 96, 155, 228, 315, 416, 531, 660, 803, 960, ...; %C A226492 . k=15: A152773; %C A226492 . k=16: A139272; %C A226492 . k=17: 0, 3, 23, 60, 114, 185, 273, 378, 500, 639, 795, 968, ...; %C A226492 . k=18: A152751; %C A226492 . k=19: 0, 3, 25, 66, 126, 205, 303, 420, 556, 711, 885, 1078, ...; %C A226492 . k=20: 0, 3, 26, 69, 132, 215, 318, 441, 584, 747, 930, 1133, ...; %C A226492 . k=21: A152759; %C A226492 . k=22: 0, 3, 28, 75, 144, 235, 348, 483, 640, 819, 1020, 1243, ...; %C A226492 . k=23: 0, 3, 29, 78, 150, 245, 363, 504, 668, 855, 1065, 1298, ...; %C A226492 . k=24: A152767; %C A226492 . k=25: 0, 3, 31, 84, 162, 265, 393, 546, 724, 927, 1155, 1408, ...; %C A226492 . k=26: 0, 3, 32, 87, 168, 275, 408, 567, 752, 963, 1200, 1463, ...; %C A226492 . k=27: A153783; %C A226492 . k=28: A195021; %C A226492 . k=29: 0, 3, 35, 96, 186, 305, 453, 630, 836, 1071, 1335, 1628, ...; %C A226492 . k=30: A153448; %C A226492 . k=31: 0, 3, 37, 102, 198, 325, 483, 672, 892, 1143, 1425, 1738, ...; %C A226492 . k=32: 0, 3, 38, 105, 204, 335, 498, 693, 920, 1179, 1470, 1793, ...; %C A226492 . k=33: A153875. %C A226492 Also: %C A226492 a(n) - n = A180223(n); %C A226492 a(n) + n = n*(11*n-3)/2 = 0, 4, 19, 45, 82, 130, 189, 259, ...; %C A226492 a(n) - 2*n = A051865(n); %C A226492 a(n) + 2*n = A022268(n); %C A226492 a(n) - 3*n = A152740(n-1); %C A226492 a(n) + 3*n = A022269(n); %C A226492 a(n) - 4*n = n*(11*n-13)/2 = 0, -1, 9, 30, 62, 105, 159, 224, ...; %C A226492 a(n) + 4*n = A254963(n); %C A226492 a(n) - n*(n-1)/2 = A147874(n+1); %C A226492 a(n) + n*(n-1)/2 = A094159(n) (case k=12); %C A226492 a(n) - n*(n-1) = A062741(n) (see above, this is the case k=9); %C A226492 a(n) + n*(n-1) = n*(13*n-7)/2 (case k=13); %C A226492 a(n) - n*(n+1)/2 = A135706(n); %C A226492 a(n) + n*(n+1)/2 = A033579(n); %C A226492 a(n) - n*(n+1) = A051682(n); %C A226492 a(n) + n*(n+1) = A186030(n); %C A226492 a(n) - n^2 = A062708(n); %C A226492 a(n) + n^2 = n*(13*n-5)/2 = 0, 4, 21, 51, 94, 150, 219, ..., etc. %C A226492 Sum of reciprocals of a(n), for n > 0: 0.47118857003113149692081665034891... %H A226492 Bruno Berselli, <a href="/A226492/b226492.txt">Table of n, a(n) for n = 0..1000</a> %H A226492 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A226492 G.f.: x*(3+8*x)/(1-x)^3. %F A226492 a(n) + a(-n) = A033584(n). %F A226492 From _Elmo R. Oliveira_, Dec 27 2024: (Start) %F A226492 E.g.f.: exp(x)*x*(6 + 11*x)/2. %F A226492 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. %F A226492 a(n) = n + A180223(n). (End) %t A226492 Table[n (11 n - 5)/2, {n, 0, 50}] %t A226492 CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* _Vincenzo Librandi_, Aug 18 2013 *) %t A226492 LinearRecurrence[{3,-3,1},{0,3,17},50] (* _Harvey P. Dale_, Jan 14 2019 *) %o A226492 (Magma) [n*(11*n-5)/2: n in [0..50]]; %o A226492 (Magma) I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // _Vincenzo Librandi_, Aug 18 2013 %o A226492 (PARI) a(n)=n*(11*n-5)/2 \\ _Charles R Greathouse IV_, Sep 24 2015 %Y A226492 Cf. sequences in Comments lines. %Y A226492 First differences are in A017425. %Y A226492 Cf. A033584, A180223. %K A226492 nonn,easy %O A226492 0,2 %A A226492 _Bruno Berselli_, Jun 11 2013