This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226493 #42 Jan 11 2024 11:58:53 %S A226493 0,12,24,84,240,732,2184,6564,19680,59052,177144,531444,1594320, %T A226493 4782972,14348904,43046724,129140160,387420492,1162261464,3486784404, %U A226493 10460353200,31381059612,94143178824,282429536484,847288609440,2541865828332,7625597484984,22876792454964 %N A226493 Closed walks of length n in K_4 graph. %C A226493 Essentially the same as A218034. %D A226493 Mike Krebs and Tony Shaheen, Expander Families and Cayley Graphs, Oxford University Press, Inc. 2011 %H A226493 K. Böhmová, C. Dalfó, and C. Huemer, <a href="http://upcommons.upc.edu/bitstream/handle/2117/80848/Kautz-subdigraphs.pdf">On cyclic Kautz digraphs</a>, Preprint 2016. %H A226493 Cristina Dalfó, <a href="https://arxiv.org/abs/1709.01882">From subKautz digraphs to cyclic Kautz digraphs</a>, arXiv:1709.01882 [math.CO], 2017. %H A226493 C. Dalfó, <a href="https://dx.doi.org/10.1016/j.laa.2017.05.046">The spectra of subKautz and cyclic Kautz digraphs</a>, Linear Algebra and its Applications, 531 (2017), p. 210-219. %H A226493 Carlos I. Perez-Sanchez, <a href="https://arxiv.org/abs/2401.03705">The Spectral Action on quivers</a>, arXiv:2401.03705 [math.RT], 2024. %H A226493 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,3). %F A226493 a(n) = 3*(-1)^n + 3^n = 12*A015518(n-1). %F A226493 G.f.: 12*x^2 / ( (1+x)*(1-3*x) ). - _R. J. Mathar_, Jun 29 2013 %t A226493 Table[3 (-1)^k + 3^k, {k, 30}] %o A226493 (PARI) a(n) = { 3*(-1)^n + 3^n } \\ _Andrew Howroyd_, Sep 11 2019 %Y A226493 Column k=4 of A106512. %Y A226493 Cf. A218034. %K A226493 nonn,easy %O A226493 1,2 %A A226493 _Gustavo Gordillo_, Jun 09 2013