This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226500 #24 Mar 03 2016 22:52:13 %S A226500 0,3,300,29403,2881200,282328203,27665282700,2710915376403, %T A226500 265642041604800,26030209161894003,2550694855824007500, %U A226500 249942065661590841003,24491771739980078410800,2399943688452386093417403,235169989696593857076494700,23044259046577745607403063203 %N A226500 Triangular numbers representable as 3 * x^2. %H A226500 Colin Barker, <a href="/A226500/b226500.txt">Table of n, a(n) for n = 1..503</a> %H A226500 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1). %F A226500 a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3), for n > 3. a(n) = floor((49 + 20*sqrt(6))^(n-1)/32). - _Giovanni Resta_, Jun 09 2013 %F A226500 G.f.: 3*x^2*(1+x)/((1-x)*(1-98*x+x^2)); a(n)=3*A108741(n-1). - _Joerg Arndt_, Jun 10 2013 %F A226500 a(n) = (49+20*sqrt(6))^(-n)*(49+20*sqrt(6)-2*(49+20*sqrt(6))^n+(49-20*sqrt(6))*(49+20*sqrt(6))^(2*n))/32. - _Colin Barker_, Mar 03 2016 %t A226500 a[1]=0; a[2]=3; a[3]=300; a[n_] := a[n] = 99*(a[n-1] - a[n-2]) + a[n-3]; Array[a, 10] (* _Giovanni Resta_, Jun 09 2013 *) %t A226500 Rest@ CoefficientList[Series[3 x^2 (1 + x)/((1 - x) (1 - 98 x + x^2)), {x, 0, 16}], x] (* or *) %t A226500 3 LinearRecurrence[{99, -99, 1}, {0, 1, 100}, 16] (* _Michael De Vlieger_, Mar 03 2016, latter after _Vincenzo Librandi_ at A108741 *) %o A226500 (C) %o A226500 #include <stdio.h> %o A226500 #include <math.h> %o A226500 typedef unsigned long long U64; %o A226500 U64 isTriangular(U64 a) { // input must be < 1ULL<<63 %o A226500 U64 r = sqrt(a*2); %o A226500 return (r*(r+1) == a*2); %o A226500 } %o A226500 int main() { %o A226500 for (U64 j, i = 0; (j=i*i*3) < (1ULL<<63); i++) %o A226500 if (isTriangular(j)) printf("%llu, ", j); %o A226500 return 0; %o A226500 } %Y A226500 Cf. A029549 (triangular numbers representable as x^2 + x). %Y A226500 Cf. A000217, A001219, A165892, A069017. %K A226500 nonn,easy %O A226500 1,2 %A A226500 _Alex Ratushnyak_, Jun 09 2013 %E A226500 a(12)-a(15) from _Giovanni Resta_, Jun 09 2013