This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226516 #35 Jan 09 2025 10:18:30 %S A226516 0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,1,2,1,2,1,2,2,3,3,4,4,6,5,8,6,10,8,13, %T A226516 11,17,15,23,20,31,26,41,34,54,45,71,60,94,80,125,106,166,140,220,185, %U A226516 291,245,385,325,510,431,676,571,896,756,1187,1001,1572,1326,2082,1757,2758,2328,3654,3084,4841,4085,6413 %N A226516 Number of (18,7)-reverse multiples with n digits. %C A226516 Comment from _Emeric Deutsch_, Aug 21 2016 (Start): %C A226516 Given an increasing sequence of positive integers S = {a0, a1, a2, ... }, let %C A226516 F(x) = x^{a0} + x^{a1} + x^{a2} + ... . %C A226516 Then the g. f. for the number of palindromic compositions of n with parts in S is (see Hoggatt and Bicknell, Fibonacci Quarterly, 13(4), 1975): %C A226516 (1 + F(x))/(1 - F(x^2)) %C A226516 Playing with this, I have found easily that %C A226516 1. number of palindromic compositions of n into {3,4,5,...} = A226916(n+4); %C A226516 2. number of palindromic compositions of n into {1,4,7,10,13,...} = A226916(n+6); %C A226516 3. number of palindromic compositions of n into {1,4} = A226517(n+10); %C A226516 4. number of palindromic compositions of n into {1,5} = A226516(n+11). %C A226516 (End) %H A226516 Vincenzo Librandi, <a href="/A226516/b226516.txt">Table of n, a(n) for n = 0..1000</a> %H A226516 V. E. Hogatt, M. Bicknell, <a href="https://fq.math.ca/13-4.html">Palindromic Compositions</a>, Fib. Quart. 13(4) (1975) 350-356 %H A226516 N. J. A. Sloane, <a href="http://arxiv.org/abs/1307.0453">2178 And All That</a>, Fib. Quart., 52 (2014), 99-120. %H A226516 N. J. A. Sloane, <a href="/A001232/a001232.pdf">2178 And All That</a> [Local copy] %H A226516 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,0,0,0,0,0,1). %F A226516 G.f.: x^6*(1+x)*(1-x+x^5)/(1-x^2-x^10). %F A226516 a(n) = a(n-2) + a(n-10) for n>12, with initial values a(0)-a(12) equal to 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1. [_Bruno Berselli_, Jun 17 2013] %F A226516 a(2n+1) = A003520(n-5). a(2n) = A098523(n-6). - _R. J. Mathar_, Dec 13 2022 %p A226516 f:=proc(n) option remember; %p A226516 if %p A226516 n <= 5 then 0 %p A226516 elif n=6 then 1 %p A226516 elif n <= 10 then 0 %p A226516 elif n <= 12 then 1 %p A226516 else f(n-2)+f(n-10) %p A226516 fi; %p A226516 end; %p A226516 [seq(f(n),n=0..100)] %t A226516 CoefficientList[Series[x^6 (1 - x^2 + x^5 + x^6) / (1 - x^2 - x^10), {x, 0, 80}], x] (* _Vincenzo Librandi_, Jun 18 2013 *) %t A226516 LinearRecurrence[{0,1,0,0,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,1,1},80] (* _Harvey P. Dale_, Jun 17 2015 *) %Y A226516 Cf. A214927, A226517, A226916. %K A226516 nonn,easy,base %O A226516 0,17 %A A226516 _N. J. A. Sloane_, Jun 16 2013