This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226533 #26 Nov 10 2014 06:17:56 %S A226533 5,6,2,150,22,82,2,258,70,30,42,18,2,12,262,58,460,36,552,24,318,344, %T A226533 450,54,274,88,36,92,90,188,554,20,404,700,240,6,136,262,578,222,2182, %U A226533 276,162,60,142,326,176,198,930,1116 %N A226533 a(n) = smallest integer m such that m^n is a sum of two successive primes. %H A226533 Zak Seidov, <a href="/A226533/b226533.txt">Table of n, a(n) for n = 1..150</a> %e A226533 5^1 = 5 = 2 + 3, 6^2 = 36 = 17 + 19, 2^3 = 8 = 3 + 5, 150^4 =506250000 = 253124999 + 253125001. %t A226533 a[n_] := For[m = 2, True, m++, p = m^n/2 // NextPrime[#, -1]&; q = NextPrime[p]; If[p + q == m^n, Print["a(", n, ") = ", m]; Return[m]]]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Jun 10 2013 *) %t A226533 tsp[n_]:=Module[{m=1,t},t=m^n;While[NextPrime[t/2]+NextPrime[t/2, -1]! = t,m++;t=m^n];m]; Array[tsp,50] (* _Harvey P. Dale_, Nov 10 2014 *) %o A226533 (PARI) a(n)=if(n==1,return(5)); my(m=1,M,p); while(1,M=m++^n;p=precprime(M/2); ispseudoprime(M-p) && M-p==nextprime(M/2) && return(m)) \\ _Charles R Greathouse IV_, Jun 10 2013 %Y A226533 a(2) = 6 = A074924(1), a(3) = 2 = A074925(1). Cf. A001043, A001597. %K A226533 nonn %O A226533 1,1 %A A226533 _Zak Seidov_, Jun 09 2013 %E A226533 a(41)-a(50) from _Jean-François Alcover_, Jun 10 2013