This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226554 #18 Apr 27 2022 08:55:43 %S A226554 0,1,5,34,386,6940,221672,12582472,1293374998,242394178200, %T A226554 83374069529638,52845726291860344,61928161880183204434, %U A226554 134499571879749571406816,542432658409586214809714176,4068438590479352629770422328000,56820656114941381799512710314429768 %N A226554 Number of squares in all tilings of an n X n square using integer-sided square tiles. %p A226554 b:= proc(n, l) option remember; local i, k, s, t; %p A226554 if max(l[])>n then [0, 0] elif n=0 or l=[] then [1, 0] %p A226554 elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l)) %p A226554 else for k do if l[k]=0 then break fi od; s:=[0$2]; %p A226554 for i from k to nops(l) while l[i]=0 do s:=s+(h->h+[0, h[1]]) %p A226554 (b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])) %p A226554 od; s %p A226554 fi %p A226554 end: %p A226554 a:= n-> b(n, [0$n])[2]: %p A226554 seq(a(n), n=0..10); %t A226554 b[n_, l_] := b[n, l] = Module[{i, k, s, t}, %t A226554 Which[Max[l] > n, {0, 0}, n == 0 || l == {}, {1, 0}, %t A226554 Min[l] > 0, t = Min[l]; b[n - t, l - t], True, %t A226554 k = Position[l, 0, 1][[1, 1]]; s = {0, 0}; %t A226554 For[i = k, i <= Length[l] && l[[i]] == 0, i++, %t A226554 s = s + Function[h, h + {0, h[[1]]}][b[n, Join[l[[1;; k-1]], %t A226554 Table[1+i-k, {j, k, i}], l[[i+1;;]]]]]]; s]]; %t A226554 a[n_] := b[n, Array[0&, n]][[2]]; %t A226554 Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* _Jean-François Alcover_, Apr 27 2022, after _Alois P. Heinz_ in A226545 *) %Y A226554 Main diagonal of A226545. %Y A226554 Row sums of A226936. %Y A226554 Cf. A045846. %K A226554 nonn %O A226554 0,3 %A A226554 _Alois P. Heinz_, Jun 10 2013 %E A226554 a(16) from _Alois P. Heinz_, Nov 16 2016