cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226555 Numerators of row sums of the triangular enumeration of rational numbers A226314(n,k) / A054531(n,k), 1 <= k <= n.

This page as a plain text file.
%I A226555 #4 Jun 10 2013 17:31:09
%S A226555 1,5,4,13,7,25,10,33,17,45,16,69,19,65,38,81,25,109,28,125,55,105,34,
%T A226555 177,53,125,68,181,43,241,46,193,89,165,100,301,55,185,106,321,61,349,
%U A226555 64,293,167,225,70,433,109,341,140,349,79,433,162,465,157,285,88
%N A226555 Numerators of row sums of the triangular enumeration of rational numbers A226314(n,k) / A054531(n,k), 1 <= k <= n.
%H A226555 Reinhard Zumkeller, <a href="/A226555/b226555.txt">Table of n, a(n) for n = 1..1000</a>
%e A226555 .   n         A226314(n,k) / A054531(n,k), 1<=k<=n<=12           row sums
%e A226555 .  --   -------------------------------------------------------- --------
%e A226555 .   1:  1                                                           1
%e A226555 .   2:  1/2 2                                                       5/2
%e A226555 .   3:  1/3 2/3 3                                                   4
%e A226555 .   4:  1/4 3/2 3/4 4                                              13/2
%e A226555 .   5:  1/5 2/5 3/5 4/5 5                                           7
%e A226555 .   6:  1/6 4/3 5/2 5/3 5/6 6                                      25/2
%e A226555 .   7:  1/7 2/7 3/7 4/7 5/7 6/7 7                                  10
%e A226555 .   8:  1/8 5/4 3/8 7/2 5/8 7/4 7/8 8                              33/2
%e A226555 .   9:  1/9 2/9 7/3 4/9 5/9 8/3 7/9 8/9 9                          17
%e A226555 .  10:  1/10 6/5 3/10 7/5 9/2 8/5 7/10 9/5 9/10 10                 45/2
%e A226555 .  11:  1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11      16
%e A226555 .  12:  1/12 7/6 9/4 10/3 5/12 11/2 7/12 11/3 11/4 11/6 11/12 12   69/2 .
%o A226555 (Haskell)
%o A226555 import Data.Ratio ((%), numerator); import Data.Function (on)
%o A226555 a226555 n = numerator $ sum $
%o A226555             zipWith ((%) `on` toInteger) (a226314_row n) (a054531_row n)
%Y A226555 Cf. A040001 (denominators).
%K A226555 nonn,frac
%O A226555 1,2
%A A226555 _Reinhard Zumkeller_, Jun 10 2013