cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226562 Numbers which are the sum of two squared primes in exactly three ways (ignoring order).

This page as a plain text file.
%I A226562 #29 Sep 20 2018 00:30:36
%S A226562 2210,3770,5330,6290,12818,16490,18122,19370,24050,24650,26690,32810,
%T A226562 33410,34970,36530,39650,39770,44642,45050,45890,49010,50690,51578,
%U A226562 57770,59450,61610,63050,66170,67490,72410,73610,74210,80330,85202,86210,86330,88010
%N A226562 Numbers which are the sum of two squared primes in exactly three ways (ignoring order).
%C A226562 Suggestion: difference between successive terms is always at least 3. (With the known 115885 terms <10^9, the smallest difference is 24.) - _Zak Seidov_, Jun 12 2013
%D A226562 Stan Wagon, Mathematica in Action, Springer, 2000 (2nd ed.), Ch. 17.5, pp. 375-378.
%H A226562 Zak Seidov, <a href="/A226562/b226562.txt">Table of n, a(n) for n = 1..2464</a> (all terms up to 10^7).
%e A226562 2210 = 19^2 + 43^2 = 23^2 + 41^2 = 29^2 + 37^2;
%p A226562 Prime2PairsSum := s -> select( x -> `if`(andmap(isprime, x), true, false), numtheory:-sum2sqr(s)):
%p A226562 for n from 2 to 10 do
%p A226562 if nops(Prime2PairsSum(n)) = 3 then print(n,Prime2PairsSum(n)) fi
%p A226562 od;
%t A226562 Select[Range@20000, Length[Select[ PowersRepresentations[#, 2, 2], And @@ PrimeQ[#] &]] == 3 &] (* _Giovanni Resta_, Jun 11 2013 *)
%Y A226562 Cf. A054735 (restricted to twin primes), A037073, A069496.
%Y A226562 Cf. A045636 (sum of two squared primes), A226539.
%Y A226562 Cf. A214511 (least number having n representations).
%Y A226562 Cf. A226539 (restricted to sums decomposed in exactly three ways).
%K A226562 nonn
%O A226562 1,1
%A A226562 _Henk Koppelaar_, Jun 11 2013
%E A226562 a(22)-a(37) from _Giovanni Resta_, Jun 11 2013