A226572 Decimal expansion of lim_{k->oo} f(k), where f(1)=2, and f(k) = 2 + log(f(k-1)) for k>1.
3, 1, 4, 6, 1, 9, 3, 2, 2, 0, 6, 2, 0, 5, 8, 2, 5, 8, 5, 2, 3, 7, 0, 6, 1, 0, 2, 8, 5, 2, 1, 3, 6, 8, 2, 5, 2, 8, 8, 8, 6, 6, 2, 0, 4, 6, 1, 8, 2, 4, 8, 8, 4, 2, 6, 0, 3, 4, 6, 1, 9, 2, 9, 1, 2, 8, 6, 7, 7, 5, 1, 6, 3, 9, 8, 7, 5, 4, 8, 8, 7, 0, 7, 7, 4, 3
Offset: 1
Examples
2 + log 2 = 2.693147... 2 + log(2 + log 2) = 2.990710... 2 + log(2 + log(2 + log 2)) = 3.095510... limit(f(n)) = 3.14619322062...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[s_, accuracy_] := FixedPoint[N[s - Log[#], accuracy] &, 1] g[s_, accuracy_] := FixedPoint[N[s + Log[#], accuracy] &, 1] d1 = RealDigits[f[2, 200]][[1]] (* A226571 *) d2 = RealDigits[g[2, 200]][[1]] (* A226572 *) s /. NSolve[s - Log[s] == 2, 200] (* both constants *) h[x_] := s /. NSolve[s - Log[s] == x] Plot[h[x], {x, 1, 3}, PlotRange -> {0, 1}] (* bottom branch of h *) Plot[h[x], {x, 1, 3}, PlotRange -> {1, 5}] (* top branch *)
-
PARI
default(realprecision, 100); solve(x=3, 4, x - log(x) - 2) \\ Jianing Song, Dec 30 2018
Formula
Equals -LambertW(-1, -exp(-2)) = A202321 + 2. - Vaclav Kotesovec, Jan 09 2014
Extensions
Definition revised by N. J. A. Sloane, Dec 09 2017
Comments