cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226599 Numbers which are the sum of two squared primes in exactly four ways (ignoring order).

This page as a plain text file.
%I A226599 #17 Sep 20 2018 00:30:43
%S A226599 10370,10730,11570,12410,13130,19610,22490,25010,31610,38090,38930,
%T A226599 39338,39962,40970,41810,55250,55970,59330,59930,69530,70850,73730,
%U A226599 76850,77090,89570,98090,98930,103298,118898,125450,126290,130730,135218,139490
%N A226599 Numbers which are the sum of two squared primes in exactly four ways (ignoring order).
%C A226599 It appears that all first differences are divisible by 24. - _Zak Seidov_, Jun 14 2013
%D A226599 Stan Wagon, Mathematica in Action, Springer, 2000 (2nd ed.), Ch. 17.5, pp. 375-378.
%H A226599 T. D. Noe, <a href="/A226599/b226599.txt">Table of n, a(n) for n = 1..10000</a>
%F A226599 a(n) = p^2 + q^2; p, q are (not necessarily different) primes
%e A226599 10370 = 13^2 + 101^2 = 31^2 + 97^2 = 59^2 + 83^2 = 71^2 + 73^2.
%e A226599 10730 = 11^2 + 103^2 = 23^2 + 101^2 = 53^2 + 89^2 = 67^2 + 79^2.
%p A226599 Prime2PairsSum := s -> select(x ->`if`(andmap(isprime, x), true, false),
%p A226599    numtheory:-sum2sqr(s)):
%p A226599 for n from 2 to 10^6 do
%p A226599   if nops(Prime2PairsSum(n)) = 4 then print(n, Prime2PairsSum(n)) fi;
%p A226599 od;
%t A226599 (* Assuming mod(a(n),24) = 2 *) Reap[ For[ k = 2, k <= 2 + 240000, k = k + 24, pr = Select[ PowersRepresentations[k, 2, 2], PrimeQ[#[[1]]] && PrimeQ[#[[2]]] &]; If[Length[pr] == 4 , Print[k]; Sow[k]]]][[2, 1]] (* _Jean-François Alcover_, Jun 14 2013 *)
%Y A226599 Cf. A054735 (restricted to twin primes), A037073, A069496.
%Y A226599 Cf. A045636 (sum of two squared primes is a superset).
%Y A226599 Cf. A214511 (least number having n representations).
%Y A226599 Cf. A225104 (numbers having at least three representations is a superset).
%Y A226599 Cf. A226539, A226562 (sums decomposed in exactly two and three ways).
%K A226599 nonn
%O A226599 1,1
%A A226599 _Henk Koppelaar_, Jun 13 2013