A226607 Irregular array read by rows in which row floor(k/3)+1, where gcd(k,6)=1, lists the smallest elements, in ascending order, of conjecturally all primitive cycles of positive integers under iteration by the 3x+k function.
1, 1, 19, 23, 187, 347, 5, 1, 13, 1, 131, 211, 227, 251, 259, 283, 287, 319, 1, 23, 5, 5, 7, 41, 7, 17, 1, 11, 3811, 7055, 13, 13, 17, 19, 23, 29, 1, 1, 5, 25, 65, 73, 85, 89, 101, 25, 103, 1, 7, 41, 1, 133, 149, 181, 185, 217, 221, 1, 235, 19, 17, 29, 31, 2585, 2809, 3985, 4121, 4409, 5, 19, 47, 1, 1, 7, 233, 265
Offset: 1
Examples
The irregular array starts: (k=1) 1; (k=5) 1, 19, 23, 187, 347; (k=7) 5; (k=11) 1, 13; a(7)=5 is the smallest number in the primitive 3x+7 cycle {5,11,20,10}.
Links
- Geoffrey H. Morley, Rows 1..6667 of array, flattened
- E. G. Belaga and M. Mignotte, Cyclic Structure of Dynamical Systems Associated with 3x+d Extensions of Collatz Problem, Preprint math. 2000/17, Univ. Louis Pasteur, Strasbourg (2000).
- E. G. Belaga and M. Mignotte, Walking Cautiously into the Collatz Wilderness: Algorithmically, Number Theoretically, Randomly, Fourth Colloquium on Mathematics and Computer Science, DMTCS proc. AG. (2006), 249-260.
- E. G. Belaga and M. Mignotte, The Collatz Problem and Its Generalizations: Experimental Data. Table 1. Primitive Cycles of (3n+d)-mappings, Preprint math. 2006/15, Univ. Louis Pasteur, Strasbourg (2006).
- E. G. Belaga and M. Mignotte, The Collatz Problem and Its Generalizations: Experimental Data. Table 2. Factorization of Collatz Numbers 2^l-3^k, Preprint math. 2006/15, Univ. Louis Pasteur, Strasbourg (2006).
- J. C. Lagarias, The set of rational cycles for the 3x+1 problem, Acta Arith. 56 (1990), 33-53.
Crossrefs
Extensions
For 0
Comments