This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226646 #28 Feb 16 2025 08:33:20 %S A226646 3,1,10,1,3,21,0,3,8,28,0,1,3,10,36,0,1,3,6,12,57,0,1,2,3,10,21,42,0, %T A226646 0,1,4,2,10,17,70,0,0,1,3,3,8,9,28,79,0,0,0,1,3,4,7,20,26,96,0,0,1,1, %U A226646 2,3,4,10,21,36,62,0,0,0,1,1,7,1,7,6,21,25,160,0,0,0,1,0,3,3,6,12,12,16,57,59 %N A226646 Number of ways to express m/n as Egyptian fractions in just three terms, that is, m/n = 1/x + 1/y + 1/z satisfying 1 <= x <= y <= z and read by antidiagonals. %C A226646 See A073101 for the 4/n conjecture due to Erdös and Straus. %C A226646 The first upper diagonal is 10, 8, 6, 2, 4, 1, 2, 1, 2, 0, 3, 0, 0, 1, 0, 0, 1, 0, 1, 0,... . %C A226646 The main diagonal is: 3, 3, 3, 3, 3, 3, ... since 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/4 + 1/4 = 1/3 + 1/3 + 1/3. See A002966(3). %C A226646 The first lower diagonal is 1, 3, 3, 4, 3, 7, 3, 5, 4, 6, 3, 10, 3, 6, 6, 6, 3, 9, 3, 9, ... . %C A226646 The antidiagonal sum is 3, 11, 25, 39, 50, 79, 79, 104, 131, 157, 140, 229, 169, 220, 295, 282, ... . %H A226646 Christian Elsholtz, <a href="http://www.ams.org/tran/2001-353-08/S0002-9947-01-02782-9/home.html">Sums Of k Unit Fractions</a> %H A226646 David Eppstein, <a href="http://www.ics.uci.edu/~eppstein/numth/egypt/intro.html">Algorithms for Egyptian Fractions</a> %H A226646 David Eppstein, <a href="http://library.wolfram.com/infocenter/Articles/2926/">Ten Algorithms for Egyptian Fractions</a> %H A226646 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fractions/egyptian.html">Egyptian Fractions</a> %H A226646 Oakland University, <a href="http://www.oakland.edu/enp/">The Erdős Number Project</a> %H A226646 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a> %H A226646 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a> %e A226646 ../n %e A226646 m/ 1...2...3...4...5...6...7...8...9..10..11...12..13...14...15 =Allocation nbr. %e A226646 .1 3..10..21..28..36..57..42..70..79..96..62..160..59..136..196 A004194 %e A226646 .2 1...3...8..10..12..21..17..28..26..36..25...57..20...42...81 A226641 %e A226646 .3 1...3...3...6..10..10...9..20..21..21..16...28..11...33...36 A226642 %e A226646 .4 0...1...3...3...2...8...7..10...6..12...9...21...4...17...39 A192787 %e A226646 .5 0...1...2...4...3...4...4...7..12..10...3...17...6...21...21 A226644 %e A226646 .6 0...1...1...3...3...3...1...6...8..10...7...10...1....9...12 A226645 %e A226646 .7 0...0...1...1...2...7...3...2...3...5...2...13...8...10....9 n/a %e A226646 .8 0...0...0...1...1...3...3...3...1...2...0....8...3....7...19 n/a %e A226646 .9 0...0...1...1...0...3...2...5...3...2...0....6...2....4...10 n/a %e A226646 10 0...0...0...1...1...2...0...4...4...3...0....4...1....4....8 n/a %e A226646 Triangle (by antidiagonals): %e A226646 {3}, %e A226646 {1, 10}, %e A226646 {1, 3, 21}, %e A226646 {0, 3, 8, 28}, %e A226646 {0, 1, 3, 10, 36}, %e A226646 {0, 1, 3, 6, 12, 57}, %e A226646 ... %t A226646 f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Table[f[n, m - n + 1], {m, 12}, {n, m, 1, -1}] // Flatten %Y A226646 Cf. A227612, A226640, A226641, A226642, A192787, A226644, A226645. %K A226646 nonn,tabl %O A226646 1,1 %A A226646 _Allan C. Wechsler_ and _Robert G. Wilson v_, Aug 17 2013