This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A226703 #16 Feb 01 2018 10:32:40 %S A226703 1,1,2,7,12,6,90,150,90,20,1701,2800,1820,560,70,42525,69510,47250, %T A226703 16800,3150,252,1323652,2153844,1506582,582120,131670,16632,924, %U A226703 49329280,80015936,57093036,23291268,5885880,924924,84084,3432,2141764053,3466045440,2509478400,1063782720,289429140,51891840,6006000,411840,12870 %N A226703 Triangle read by rows: T(n,k) = binomial(2*n,k)*Stirling2(2*n-k,n). %C A226703 Polynomials based on Extended Tepper's Identity %C A226703 P(n,x)=sum(j=0..n, (-1)^(n-j)*binomial(n,j)*(x+j)^(2*n))/n!. %C A226703 P(n,x)=sum(j=0..n, binomial(2*n,j)*stirling2(2*n-j,n)*x^j). %C A226703 P(n,1)=A129506(n). %D A226703 G. P. Egorychev. “Integral Representation and the Computation of Combinatorial Sums.” Translations of Mathematical Monographs, Vol. 59, American Mathematical Society, (1984). %D A226703 F. J. Papp. “Another Proof of Tepper’s Inequality.” Math. Magazine 45 (1972): 119-121. %F A226703 T(n,k) = binomial(2*n,k)*stirling2(2*n-k,n). %F A226703 T(n,n) = A000984(n). %F A226703 T(n,0) = A007820(n). %e A226703 1, %e A226703 1 +2*x, %e A226703 7 +12*x +6*x^2, %e A226703 90 +150*x +90*x^2 +20*x^3, %e A226703 1701 +2800*x +1820*x^2 +560*x^3 +70*x^4. %t A226703 Flatten[Table[Binomial[2n,k]StirlingS2[2n-k,n],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Jun 19 2013 *) %Y A226703 Cf. A000984, A007820, A129506. %K A226703 nonn,tabl %O A226703 0,3 %A A226703 _Vladimir Kruchinin_, Jun 15 2013