cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226706 G.f.: 1 / sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.

This page as a plain text file.
%I A226706 #7 Jun 16 2013 01:02:30
%S A226706 1,2,22,256,3174,40862,539376,7247448,98684230,1357638124,18831752122,
%T A226706 262974273200,3692853486768,52102851020154,738102882420440,
%U A226706 10492839572260176,149623214762194182,2139329701502229300,30661862088900836964,440404155129948147776
%N A226706 G.f.: 1 / sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5) where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
%F A226706 Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} C(3*n+2*k,n-k)*C(3*n-2*k,k).
%F A226706 Self-convolution equals A226705.
%e A226706 G.f.: A(x) = 1 + 2*x + 22*x^2 + 256*x^3 + 3174*x^4 + 40862*x^5 +...
%e A226706 A related series is G(x) = 1 + x*G(x), which begins
%e A226706 G(x) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 + 5481*x^5 + 62832*x^6 +...
%e A226706 where A(x) = 1/sqrt(1 + 12*x*G(x)^4 - 16*x*G(x)^5).
%o A226706 (PARI) {a(n)=local(G=1+x); for(i=0, n,G=1+x*G^6+x*O(x^n)); polcoeff(1/sqrt(1+12*x*G^4-16*x*G^5), n)}
%o A226706 for(n=0, 30, print1(a(n), ", "))
%Y A226706 Cf. A226705, A183160, A002295.
%K A226706 nonn
%O A226706 0,2
%A A226706 _Paul D. Hanna_, Jun 15 2013