A226718 n! mod tetrahedral(n), that is A000142(n) mod A000292(n).
0, 2, 6, 4, 15, 48, 0, 0, 45, 120, 66, 168, 0, 0, 120, 288, 153, 360, 0, 0, 231, 528, 0, 0, 0, 0, 378, 840, 435, 960, 0, 0, 0, 0, 630, 1368, 0, 0, 780, 1680, 861, 1848, 0, 0, 1035, 2208, 0, 0, 0, 0, 1326, 2808, 0, 0, 0, 0, 1653, 3480, 1770, 3720, 0, 0, 0, 0, 2145, 4488
Offset: 1
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A226718 := proc(n) n! mod ( n*(n+1)*(n+2)/6) ; end proc: # R. J. Mathar, Jun 18 2013
-
Mathematica
Table[Mod[n!, n (n + 1) (n + 2)/6], {n, 66}] (* Ivan Neretin, May 18 2015 *)
-
Python
f = 1 for i in range(1, 100): f *= i print(f % (i*(i+1)*(i+2)//6), end=', ')
Formula
a(n) = n! mod (n*(n+1)*(n+2)/6).
For n>4: if neither n+1 nor n+2 is prime, then a(n)=0. Otherwise, a(n)=n(n+1)/2 for odd n and a(n)=n(n+2) for even n. - Ivan Neretin, May 18 2015